<span>Group 1 can be characterized as atoms that have 1 electron in their valence shell. This is valuable when dealing with these questions, because the loss or gain of valence electrons is what defines ionic relationships. When group 1 elements form ionic bonds with other atoms, they are extremely likely to lose their valence electron, since the nucleus has a weaker pull on it than, say, a chlorine atom has on its 7 valence electrons. The weaker pull between the nucleus and the valence electron of group 1 elements means that the radius is high, since the electron is more free to move with less pull on it. This also means that the first ionization energy is low, since it takes relatively little energy for that electron to be pulled away to another atom.</span>
it's the last one because it's depended on the rock layers
Answer:
Global warming causes sea-level rise as oceans expand, and makes storm patterns more energetic. Consequently it will affect most of the world's coastlines through inundation and increased erosion.
<h3>
<u>PLEASE</u><u> MARK</u><u> ME</u><u> BRAINLIEST</u><u>.</u></h3>
Decay constant of the process 1×10^(-12) day^(-1).
<h3>What is decay constant?</h3>
A radioactive nuclide's probability of decay per unit time is known as its decay constant, which is expressed in units of s1 or a1. As a result, as shown by the equation dP/P dt =, the number of parent nuclides P declines with time t. Nuclear forces are about 1,000,000 times more powerful than electrical and molecular forces in their ability to bind protons and neutrons. The strength of the bonds holding the radioactive element are likewise indifferent to the decay probabilities and's, in addition to being unaffected by temperature and pressure. The decay constant is related to the nuclide's T 1/2 half-life by T 1/2 = ln 2/.
To know more about decay constant:
brainly.com/question/16623902
#SPJ4
Answer:
Endergonic reaction or nonspontaneous reaction.
Explanation:
Gibbs free energy is a state function that determines the spontaneity or feasibility of the given reversible chemical reaction, at fixed pressure and temperature. It is given by the equation:
ΔG = ΔH - TΔS
Here, ΔG - change in Gibbs free energy
ΔH- The change in enthalpy of reaction
ΔS - The change in entropy
T- Temperature
When the <u>change in the Gibbs free energy for a given reaction is positive</u> (ΔG > 0), then that chemical reaction is known as an endergonic reaction or nonspontaneous reaction.