Exothermic, because it is releasing heat energy into its environment
Answer:
Solution Concentration: Molarity Moles of solute in one liter of solution Used because it describes how many molecules of solute are in each liter of solution Tro: Chemistry: A Molecular Approach, 2/e 6 amount of solute (in moles) Molarity, M = amount of solution (in L) moles of solute M = L of solution or simply 4
GOOD LUCK!!
The full question can be seen below:

The decomposition of
is represented by the equation above.
A student monitored the decomposition of a 1.0 L sample of
at a constant temperature of 300K and recorded the concentration of
as function of time. The results are given in the table below:
Time (s) 
0 2.7
200 2.1
400 1.7
600 1.4
The
produced from the decomposition of the 1.0 L sample of
is collected in a previously evacuated 10.0 L flask at 300 K. What is the approximate pressure in the flask after 400 s?
(For estimation purpose, assume that 1.0 mole of gas in 1.0 L exerts a pressure of 24 atm at 300 K).
Answer:
1.2 atm
Explanation:
Considering all assumptions as stated above;

Initial 2.7 mole --- ---
Change -1.0 --- 
Equilibrium 1.7 mole --- 0.5 mole
To determine the concentration of O₂; we need to convert the moles to concentration for O₂ = 
= 
= 0.05 
Thus, based on the assumption that "1.0 mole of gas in 1.0 L exerts a pressure of 24 atm"
∴ 0.05
will give rise to = 0.05
× 24
= 1.2 atm
Answer: -
Solubility of a substance depend on the balance of intermolecular forces between the solvent and solute, and the entropy change that accompanies this process.
Temperature and pressure also plays a role in solubility.
A solution having Group 1 cations like lithium, sodium, potassium etc are always soluble.
A solution having NH₄⁺ is soluble.
All salts with anion as nitrates, acetates, chlorates, and perchlorates are soluble in water.
Answer:
the volume of CHCI3 = 7.87 ml
the volume of CHBr3 = 12.13 ml
Explanation:
From the given information:
We all know that 1 g/cm^3 = 1 g/ml
The density of boron = 2.34 g/ml
The Volume of the liquid mixture = 20 ml
Recall that:
Density = mass/volume
Mass = Density × Volume
Mass = 2.34 g/ml × 20 ml
Mass = 46.8 g
Suppose the volume of CHCI3 be Y and the Volume of CHBr3 be 20 - Y
Then :
Y (1.492) + 20-Y(2.890) = 46.8
1.492Y + 57.8 - 2.890Y = 46.8
- 1.398 Y = -11
Y = -11/ - 1.398
Y = 7.87 ml
Therefore, the volume of CHCI3 7.87 ml
the volume of CHBr3 = 20 - Y
= 20 - 7.87
= 12.13 ml