Ca + 2HCl = CaCl₂ + H₂
m(Ca)=60 g
c=1.25 mol/l
M(Ca)=40g/mol
v-?
m(Ca)/M(Ca)=m(HCl)/[2M(HCl)]=n(HCl)/2
n(HCl)=2m(Ca)/M(Ca)
n(HCl)=cv
cv=2m(Ca)/M(Ca)
v=2m(Ca)/{cM(Ca)}
v=2·60g/mol/{1.25mol/l·40g/mol}=2.4 l = 2400 ml
2400 milliliters of a 1.25 molar HCl solution would be needed
The group/family number is the same number of valance electrons.
Answer:Transocean
Explanation:
The Deepwater Horizon rig, owned and operated by offshore-oil-drilling company Transocean and leased by oil company BP, was situated in the Macondo oil prospect in the Mississippi Canyon, a valley in the continental shelf.
Uses of nonmetals in our daily life: Oxygen which is 21% by volume helps in the respiration process.
Nonmetals used in fertilizers: Fertilizers contain nitrogen.
Nonmetals used in crackers: Sulphur and phosphorus are used in fireworks.
Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.

In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
![[H^{+}]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D)
=

= 0.001

The change in Concentration Δ
![[CH_{3}COOH]](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D)
= 0.001

CH3COOH H+ CH3COOH
Initial

0 0
Change

-0.001 +0.001 +0.001
Equilibrium

- 0.001 0.001 0.001
Since the

value is so small, the assumption
![[CH_{3}COOH]_{initial} = [CH_{3}COOH]_{equilibrium}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D_%7Binitial%7D%20%3D%20%5BCH_%7B3%7DCOOH%5D_%7Bequilibrium%7D)
can be made.
![k_{a} = [tex]= 1.8*10^{-5} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{0.001^{2}}{x}](https://tex.z-dn.net/?f=%20k_%7Ba%7D%20%3D%20%5Btex%5D%3D%201.8%2A10%5E%7B-5%7D%20%20%3D%20%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D%20%3D%20%20%5Cfrac%7B0.001%5E%7B2%7D%7D%7Bx%7D%20)
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!