The number of grams of NaOH that are needed to make 500 ml of 2.5 M NaOH solution
calculate the number of moles =molarity x volume/1000
= 2.5 x 500/1000 = 1.25 moles
mass = moles x molar mass of NaOH
= 1.25 x40= 50 grams of NaOH
Explanation:
Using ethyl 3-methylbutanoate as your only source of carbon and using any other reagents necessary, propose a stepwise synthesis for the following conversion.
I need help drawing the product formed in step three.
Thanks!
Hello Mate!Well, there are
many definitions and descriptions of isolated systems, and
here are some of them:
1.
It can be a physical system which is located very very far from all other systems, so there is absolutely no interaction between them, thus making it isolated.
2.
It can be a thermodynamic system with rigid walls, which prevents mass and energy to pass through.
I Hope my answer has come to your Help. Thank you for posting your question here in
We hope to answer more of your questions and inquiries soon.
Have a nice day ahead! :)
Answer:
E° = -0.133 V
Explanation:
In the reaction:
X(s) + Y⁺(aq) → X⁺(aq) + Y(s)
<em>1 electron is transferred from X to Y</em>
Now, using Nernst equation:
E° = RT / nF ln K
<em>Where R is gas constant (8.314 J/molK), T is absolute temperature (Usually 298.15K), n are transferred electrons (1, for the reaction), F is faraday constant (96485C/mol) and K is equilibrium constant (5.59x10⁻³)</em>
Replacing:
E° = 8.314 J/molK*298.15K / 96485C/mol*1 ln 5.59x10⁻³
<em>E° = -0.133 V</em>
The one from the cupboard because it is warmer (has more thermal energy) than the one from the refrigerator. When a liquid becomes warmer, the solubility of a gas becomes lower. Therefore, there is already more CO2 in its gaseous state when the soda is warm.