<span> aluminum is an element. All elements are pure substances, so that means they are homogenous.
please mark as brainliest
</span>
Answer:

Explanation:
Hello there!
In this case, according to the given information it will be firstly necessary to set up the chemical equation taking place:

We infer we need to calculate the moles of NH3 by using both of the moles of N2 and H2 at the beginning, in order to identify the limiting reactant:

Thus, since hydrogen yields the fewest moles of ammonia, we conclude that we are just able to yield 4 moles of NH3.
Regards!
Answer:
100Jkg/°C
Explanation:
Given parameters:
Mass of metal = 2kg
Amount of heat energy = 1600J
Initial temperature = 5°C
Final temperature = 13°C
Unknown:
Specific heat capacity of the metal = ?
Solution:
Specific heat capacity of a body is the amount of heat needed to raise the temperature of unit mass of a body by 1°C.
H = m x C x (T₂ - T₁ )
H is the amount of heat
m is the mass
C is the unknown specific heat capacity
T is the temperature
Insert the parameters and solve;
1600 = 2 x C x (13 - 5)
1600 = 16C
C = 100Jkg/°C
Answer:
You need follower?
See it shows this in Laptop
I can't see who I am following it does itself
Answer:

Explanation:
Hello!
In this case, for the reaction:

In such a way, via the rate proportions, that is written considering the stoichiometric coefficients, we obtain:

Whereas the reactants, CO and H2 have negative stoichiometric coefficients; therefore the rate of disappearance of hydrogen gas is related to the rate of appearance of methanol as shown below:

Which means that the rate of disappearance of hydrogen gas is negative and the rate of appearance of methanol is positive.
Regards!