Hello!
The approximate bond angle around the central carbon atom in acrolein is
120°
The structure of acrolein is shown in the figure below. From the structure, we can deduce that the central carbon atom is in an sp2 hybridization (Atoms with a double bond hybridize in an sp2 fashion).
Atoms with sp2 hybridization have trigonal planar geometry, in this kind of hybridization, bonds are oriented the farthest away possible from each other, to minimize overlapping and the angle that allows that is 120°.
Have a nice day!
Iodine Strontium Silver...... ..I think.
ΔG deg will be negative above 7.27e+3 K.
<u>Explanation:</u>
- The ΔG deg with the temperature can be found using the formula and the formula is given below
- ΔG deg = ΔH deg - T ΔS deg
- Given data, ΔH deg = 181kJ and ΔSdeg=24.9J/K
- -T ΔS deg will be always negative and ΔG deg = ΔH deg will be positive and ΔG deg will be negative at relatively high temperatures and positive at relatively low temperatures
- solving the equation and substitute ΔGdeg=0
- ΔGdeg = ΔHdeg - T ΔSdeg
- T= ΔHdeg/ΔSdeg
- T=181 kJ / 2.49e-2 kJK-1
- By simplification we get
- T=7.27 × 10^3 K.
- Therefore, Go will be negative above 7.27 × 10^3 K
- Since ΔG deg = -RT lnK, when ΔGdeg < 0, K > 1 so the reaction will have K > 1 above 7.27 × 10^3 K.
- ΔG deg will be negative above 7.27e+3 K.
<u></u>
<u />
Answer: A
Explanation: cytokinesis is in the M phase.... Mitosis is followed by cytokinesis (cell separation)
Answer:
The Bowen's reaction series describes how minerals form in sequential order, forming at higher temperature to a lower temperature. There are two branches of crystallization, one is the continuous branch that is on the right and the other is the discontinuous branch that is on the left.
The minerals that are at the top of the Bowen's reaction series forms at a higher temperature.
In the discontinuous branch, the first mineral to crystallize from the melt is Olivine that forms at a higher temperature of about 1400°C. After crystallization, some melt remains and undergoes fractional crystallization leading to the formation of Pyroxene. Again, with the remaining melt, it reacts and forms Amphibole, followed by Biotite (mica).
In the continuous branch, the first minerals to form are the calcium-rich minerals and successively forms sodium-rich minerals. These minerals that form at a higher temperature are basic in nature and gradually change into acidic minerals.
From both the branches, it commonly forms the mineral Potassium feldspar. After this, the remaining melt combines with the magma and forms Muscovite (Mica), and at a temperature of about 650°C, it forms a more resistant and stable mineral known as the Quartz.