First let's convert the minutes to hours (multiply minutes by 60 to get hours):
30 × 60 = 1,800 drops/hour
Now that you know how much drops there are per hour, you can multiply this answer by 3 to work out how many drops there are in 3 hours:
1,800 × 3 = 5,400 drops
We know that 5 drops is equal to 1 ml, so we can divide 5,400 by 5 to work out the amount of ml:
5,400 ÷ 5 = 1,080 ml
Therefore, your final answer is 1,080 millilitres (ml)
Answer:
C2H5OH(l)+3O2(g)⟶2CO2+3H2O(l)
Explanation:
- The chemical symbol of the isotope boron-11 is ¹¹B.
- The atomic mass of the isotope boron-11 is equal to 11.009306.
- The abundance in nature of the isotope boron-11 is equal to 80.1%.
<h3>What is an isotope?</h3>
An isotope can be defined as the atom of a chemical element that has the same number of protons but different number of neutrons. This ultimately implies that, the isotopes of an element have the same atomic number (number of protons) but different atomic mass (number of neutrons).
In Chemistry, there are two main isotopes of boron and these include the following:
Boron-11 is the most stable isotope of boron and it is characterized by the following:
- The chemical symbol of the isotope boron-11 is ¹¹B.
- The atomic mass of the isotope boron-11 is equal to 11.009306.
- The abundance in nature of the isotope boron-11 is equal to 80.1%.
Read more on Boron-11 here: brainly.com/question/6283234
#SPJ1
The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
The correct answer should be option C. hope this helps