Answer:
Group 4A (or IVA) of the periodic table includes the nonmetal carbon (C), the metalloids silicon (Si) and germanium (Ge), the metals tin (Sn) and lead (Pb), and the yet-unnamed artificially-produced element ununquadium (Uuq).
The Group 4A elements have four valence electrons in their highest-energy orbitals (ns2np2). Carbon and silicon can form ionic compounds by gaining four electrons, forming the carbide anion (C4-) and silicide anion (Si4-), but they more frequently form compounds through covalent bonding. Tin and lead can lose either their outermost p electrons to form 2+ charges (Sn2+, the stannous ion, and Pb2+, the plumbous ion) or their outermost s and p electrons to form 4+ charges (Sn4+, the stannic ion, and Pb4+, the plumbic ion).
Carbon (C, Z=6).
Carbon is most familiar as a black solid is graphite, coal, and charcoal, or as the hard, crystalline diamond form. The name is derived from the Latin word for charcoal, carbo. It is found in the Earth's crust at a concentration of 480 ppm, making it the 15th most abundant element. It is found in form of calcium carbonate, CaCO3, in minerals such as limestone, marble, and dolomite (a mixture of calcium and
Explanation:
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>A</u></em><em><u>L</u></em><em><u>L</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>K</u></em><em><u>N</u></em><em><u>O</u></em><em><u>W</u></em>
<u>E</u><u>N</u><u>J</u><u>O</u><u>Y</u><u> </u><u>THE</u><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em>
Explanation:
Charles's law is one of the gas laws which explains that at constant pressure, the temperature and volume of a gas are directly proportional to each other. According to kinetic theory, as temperature rises the kinetic energy of gas also increases proportionally
metal rusting in salt water
Answer:
Co2 and 2H2O are products
Explanation:
In this chemical equation, CH4 and 2O2 react with each other to create a double replacement reaction which creates CO2 and 2H20
Hope this helps!
Answer:
1.146 x 10⁴ year.
Explanation:
- The decay of carbon-14 is a first order reaction.
- The rate constant of the reaction (k) in a first order reaction = ln (2)/half-life = 0.693/(5730 year) = 1.21 x 10⁻⁴ year⁻¹.
- The integration law of a first order reaction is:
<em>kt = ln [A₀]/[A]</em>
<em></em>
k is the rate constant = 1.21 x 10⁻⁴ year⁻¹.
t is the time = ??? years.
[A₀] is the initial percentage of carbon-14 = 100.0 %.
[A] is the remaining percentage of carbon-14 = 1/4[A₀] = 25.0 %.
∵ kt = ln [Ao]/[A]
∴ (1.21 x 10⁻⁴ year⁻¹)(t) = ln (100.0%)/[25.0 %]
(1.21 x 10⁻⁴ year⁻¹)(t) = 1.386.
∴ <em>t </em>= 1.386/
(1.21 x 10⁻⁴ year⁻¹) = <em>1.146 x 10⁴ year.</em>