The statement that is the most true regarding the states of matter is the first statement.
A. Most matter on Earth exists as a solid, liquid, or gas.
This is correct since most of the matter on Earth exists in those 3 states, meanwhile plasma is not a state that most of matter on earth is found in since it is mostly associated to stars and the external galactic regions.
Therefore, B is incorrect.
C is false, since almost of all of the matter on earth can transform and change through each of the 3 states of matter, solid, liquid, and gas.
D is false since most of the matter in universe is actually made out of plasma instead of a liquid. In fact, over 99% of the known universe's matter is said to consist of plasma.
Answer: was it this problem?
Explanation:
This question is based on the fundamental assumption of vector direction.
A vector is a physical quantity which has magnitude as well direction for its complete specification.
The magnitude of a physical quantity is simply a numerical number .Hence it can not be negative.
A negative vector is a vector which comes into existence when it is opposite to our assumed direction with respect to any other vector. For instance, the vector is taken positive if it is along + X axis and negative if it is along - X axis.
As per the first option it is given that a vector is negative if its magnitude is greater than 1. It is not correct as magnitude play no role in it.
The second option tells that the magnitude of the vector is less than 1. Magnitude can not be negative. So this is also wrong.
Third one tells that a vector is negative if its displacement is along north. It does not give any detail information about the negativity of a vector.
In a general sense we assume that vertically downward motion is negative and vertically upward is positive. In case of a falling object the motion is vertically downward. So the velocity of that object is negative .
So last option is partially correct as the vector can be negative depending on our choice of co-ordinate system.
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11