Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:
The wavelength is 754.2 nm.
Explanation:
Given that,
Diffraction pattern y= 1.35 mm
Width = 0.838 mm
Distance D= 75 cm
We need to calculate the wavelength
Using formula of diffraction pattern


Where, y = diffraction pattern
m = order
d = width
D = distance
Put the value into the formula



Hence, The wavelength is 754.2 nm.
It is D, a paint can carried up a ladder.