Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.
1). the product of the two masses being gravitationally attracted to each other
2). the distance between their centers of mass
And that's IT. The gravitational force between them depends on
only those two things, nothing else.
Answer:

Explanation:
Temperature of the house, 
Convert to rankine, 
Heat is extracted at 40°F i.e 
Calculate the coefficient of performance of the heat pump, COP

The minimum power required to run the heat pump is given by the formula:
...............(*)
Where the heat losses from the house, 
Substituting these values into * above

Answer:
A book on a table before it falls.
A yoyo before it is released.
A raised weight.
Explanation:
These are all examples of potential energy. So I hope you can find something that is comparable from the lab.
Answer:
B. twice as much kinetic energy
Explanation:
Lets take the mass of the first marble =2 m
the mass of the second marble = m
We know that velocity of particle does not depends on their mass that is the velocity of both mass will be same after dropping from the roof.
We know that kinetic energy of a mass is given as

Kinetic energy for heavier mass

Kinetic energy for light mass

KE=2 KE '
Form above two equation we can say that ,the kinetic energy for the heavier mass is twice the lighter mass.
Therefore the answer will be B.