Answer:
the second one
Step-by-step explanation:
First we find k by using the two values given:
P=Ae^(kt), 8 years between-->t=8
199 = 195•e^(8k)
Log 199 = Log [195•e^(8k)]
Log 199 = Log 195 + 8k
8k = Log 199 - Log 195
k = 0.00882/8 = .0011
Next, we plug the new data in using this k:
14 years between 2002-2016-->t=14
P = Ae^my
P = 199mi.•e^(14•.0011)
P = 199mi.•e^(.0154)
P = 199mi. • 1.0155 = 202,088,000
Answer:
y = 3/2x + 1
Step-by-step explanation:
y = 3/2x + b
-2 = 3/2(-2) + b
-2 = -3 + b
1 = b