Answer:
h = 61.16[cm]
Explanation:
In order to solve this problem we must use the principle of energy conservation. Which tells us that energy is conserved or equal in two points in space for an instant in time.
In this way we will have the points A & B, the point A for the moment before shooting and the moment B when the Dart is in the highest position.
In this way the energy is:

Now we must identify the energies in the moments A & B. in the instant A we have the spring compressed, in such a way that only elastic energy is stored.

where:
k = spring constant = 20 [N/m]
x = distance = 0.3 [m]
Now, at the moment when the dart is in the highest position (B), it means that it does not go up anymore, that is, its movement is zero, and therefore its kinetic energy is zero, in this way the energy at the highest point corresponds to potential energy.

where:
m = mass = 0.15[kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
Now replacing:
![\frac{1}{2} *20*(0.3)^{2}=0.15*9.81*h\\0.9=1.4715*h\\h=0.61[m]\\or\\h = 61.16[cm]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2A20%2A%280.3%29%5E%7B2%7D%3D0.15%2A9.81%2Ah%5C%5C0.9%3D1.4715%2Ah%5C%5Ch%3D0.61%5Bm%5D%5C%5Cor%5C%5Ch%20%3D%2061.16%5Bcm%5D)
The equation to be used is for the rectilinear motion at constant acceleration:
x = v₀t + 0.5at²
a = (v-v₀)/t
where
x is distance
v and v₀ is the final and initial velocity
t is time
a is acceleration
Because the acceleration is decelerating, that would be reported as -7.5 m/s². Substituting,
-7.5 = (0 - v₀)/t
v₀ = 7.5 t --> eqn 1
x = v₀t + 0.5at²
60 = (7.5t)(t) + 0.5(-7.5)(t²)
Solving for t,
t = 4s
Thus,
v₀ = 7.5 m/s² * 4s
v₀ = 30 m/s
Length of object . how much distance increase or decrease force
Answer:
The consecutive charge configuration has a more intense field than alternating
Explanation:
In each corner we place a different account there are only two different settings, see attached.
In the case of alternating charging (+ - + -) see diagram 1, the electric field in the center is canceled in pairs, resulting in a zero field
In the case of consecutive loads (+ + - -) in this case we have a result between the two charges, therefore the total field is
E = 2 k q / ra2 a cos 45
The consecutive charge configuration has a more intense field than alternating
C because when the part gets out of the probe it would no longer stay contacted