Answer:
Momentum, p = 23250 kg m/s
Explanation:
Given that
Mass of a car, m = 1550 kg
Speed pf car, v = 15 m/s
We need to find the momentum of the car. The formula for the momentum of an object is given by :
p = mv
Substituting all the values in the above formula
p = 1550 kg × 15 m/s
p = 23250 kg m/s
So, the momentum of the car is 23250 kg m/s.

<u>Given :</u>








<u>Let's Slove :</u><u> </u>



The phenomenon of inducing voltage by changing the magnetic field around a conductor will be Electromagnetic Induction. Option B is correct.
<h3>What is the Faraday law of electromagnetic induction?</h3>
According to Faraday's law of electromagnetic induction, the rate of change of magnetic flux link with the coil is responsible for generating emf in the coil to result in the flow of amount of current .
So in order to increase the current, we need to increase the EMF;
so we can increase it by;
1) Increasing the number of turns
2) Increase the area of the loop
3) By moving the magnet faster
Hence, option B is correct.
To learn more about Faraday law of electromagnetic induction:
brainly.com/question/13369951
#SPJ1
Answer:
True
Explanation:
In this particular case, the area of the graph represents the impulse.
In fact, impulse is defined as the change in momentum of an object:

Moreover, impulse is also defined as the product between the magnitude of the force acting on an object and the duration of the collision:

If we plot a graph of the force versus the time, if the force is constant then this graph will have a rectangular shape, and the area under the graph will simply be the product

which corresponds to the definition of impulse.
During a total lunar eclipse, the Moon located in the umbra.
The answer is letter A. For a total lunar eclipse to occur, the Sun, Earth and
Moon must be aligned in a straight line. The Earth’s umbra complete covers the
Moon. The earth’s umbra is about 870,000 miles wide.