Answer:
96
Step-by-step explanation:
Out of 270 apartments in a complex, 174 are subleased.
Given that :
Total number of apartments in complex = 270
Number subleased = 174
The complement of event A = not A
Therefore, The complement in this scenario is NOT SUBLEASED ;
Hence, the Number of apartments in complex not subleased is :
Total apartment in complex - number subleased
270 - 174 = 96
Answer:
x = 8
Step-by-step explanation:
so ![8^{2} +b^{2} =\sqrt{80} ^{2}](https://tex.z-dn.net/?f=8%5E%7B2%7D%20%2Bb%5E%7B2%7D%20%3D%5Csqrt%7B80%7D%20%5E%7B2%7D)
rearrange the formula:
![\sqrt{80} ^{2} - 8^{2} = b^{2}](https://tex.z-dn.net/?f=%5Csqrt%7B80%7D%20%5E%7B2%7D%20-%208%5E%7B2%7D%20%3D%20b%5E%7B2%7D)
![80 - 64 = b^2](https://tex.z-dn.net/?f=80%20-%2064%20%3D%20b%5E2)
![b^2 = 16\\](https://tex.z-dn.net/?f=b%5E2%20%3D%2016%5C%5C)
![b = \sqrt{16}](https://tex.z-dn.net/?f=b%20%20%3D%20%5Csqrt%7B16%7D)
![\sqrt{16} = 4](https://tex.z-dn.net/?f=%5Csqrt%7B16%7D%20%20%3D%204)
![x = 4+4 = 8](https://tex.z-dn.net/?f=x%20%3D%204%2B4%20%3D%208)
Answer:
5 and 6
Step-by-step explanation:
5 and 6
Answer:
Step-by-step explanation:
First both the rational numbers should have same denominators. So, find least common denominator
Least common denominator is 10
![\frac{-1}{5}=\frac{-1*2}{5*2}=\frac{-2}{10}\\\\\\\frac{1}{2}=\frac{1*5}{2*5}=\frac{5}{10}\\\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B5%7D%3D%5Cfrac%7B-1%2A2%7D%7B5%2A2%7D%3D%5Cfrac%7B-2%7D%7B10%7D%5C%5C%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%3D%5Cfrac%7B1%2A5%7D%7B2%2A5%7D%3D%5Cfrac%7B5%7D%7B10%7D%5C%5C%5C%5C%5C%5C)
Now multiply the numerator and denominators of the both the numbers by 10.
![\frac{-2*10}{10*10}= \frac{-20}{100} \ and \ \frac{5*10}{10*10}=\frac{50}{100}\\\\\\Now\ 10 \ rational \ numbers \ between\frac{-20}{10} \ and \ \frac{50}{100} \ is \\\\\\\frac{-19}{100},\frac{-18}{100},\frac{-17}{100},\frac{-16}{100}.\frac{-15}{100},\frac{-14}{100},\frac{-13}{100},\frac{-12}{100},\frac{-11}{100};\frac{-10}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B-2%2A10%7D%7B10%2A10%7D%3D%20%5Cfrac%7B-20%7D%7B100%7D%20%5C%20and%20%5C%20%5Cfrac%7B5%2A10%7D%7B10%2A10%7D%3D%5Cfrac%7B50%7D%7B100%7D%5C%5C%5C%5C%5C%5CNow%5C%2010%20%5C%20rational%20%20%5C%20numbers%20%5C%20between%5Cfrac%7B-20%7D%7B10%7D%20%5C%20and%20%5C%20%5Cfrac%7B50%7D%7B100%7D%20%5C%20is%20%5C%5C%5C%5C%5C%5C%5Cfrac%7B-19%7D%7B100%7D%2C%5Cfrac%7B-18%7D%7B100%7D%2C%5Cfrac%7B-17%7D%7B100%7D%2C%5Cfrac%7B-16%7D%7B100%7D.%5Cfrac%7B-15%7D%7B100%7D%2C%5Cfrac%7B-14%7D%7B100%7D%2C%5Cfrac%7B-13%7D%7B100%7D%2C%5Cfrac%7B-12%7D%7B100%7D%2C%5Cfrac%7B-11%7D%7B100%7D%3B%5Cfrac%7B-10%7D%7B100%7D)