The given question is incomplete. The complete question is:
A gas has a volume of 590 ml at a temperature of
.What volume will the gas occupy at
. Which gas law is this?
Answer: 655 ml , Charle's Law
Explanation:
To calculate the final volume of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:
Putting values in above equation, we get:
Thus the volume at
is 655 ml
Answer:
Explanation:
The
has 22 electrons arround the nucleous. Its ground state configuration following the diagonal rule is:
In term of the previous noble gas:
The ionization energies (kJ/mol) of hydrogen, nitrogen, sodium, chlorine, and fluorine are 1,312, 1,402, 496, 1,256, and 1,681,
Norma-Jean [14]
Answer: Sodium will most likely to become a monoatomic ion with fluorine when these atoms interact.
Explanation:
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
With increase in atomic size of the atom, there will be less force of attraction between the nucleus and the valence electrons of the atom. Hence, with lesser amount of energy the valence electrons can be removed.
More is the value of ionization energy more it is difficult to remove an electron. Therefore, lesser is the reactivity of element.
Hence, we can conclude that sodium will most likely to become a monoatomic ion with fluorine when these atoms interact.