step one
calculate the % of oxygen
from avogadro constant
1moles = 6.02 x 10 ^23 atoms
what about 4.33 x10^22 atoms
= ( 4.33 x 10^ 22 x 1 mole ) / 6.02 10^23= 0.0719 moles
mass= 0.0719 x16= 1.1504 g
% composition is therefore= ( 1.1504/3.25) x100 = 35.40%
step two
calculate the % composition of chrorine
100- (25.42 + 35.40)=39.18%
step 3
calculate the moles of each element
that is
Na = 25.42 /23=1.1052 moles
Cl= 39.18 /35.5=1.1037moles
O= 35.40/16= 2.2125 moles
step 4
find the mole ratio by dividing each mole by 1.1037 moles
that is
Na = 1.1052/1.1037=1.001
Cl= 1.1037/1.1037= 1
0=2.2125 = 2
therefore the empirical formula= NaClO2
Answer:
B. 111 J
Explanation:
The change in internal energy is the sum of the heat absorbed and the work done on the system:
ΔU = Q + W
At constant pressure, work is:
W = P ΔV
Given:
P = 0.5 atm = 50662.5 Pa
ΔV = 4 L − 2L = 2 L = 0.002 m³
Plugging in:
W = (50662.5 Pa) (0.002 m³)
W = 101.325 J
Therefore:
ΔU = 10 J + 101.325 J
ΔU = 111.325 J
Rounded to three significant figures, the change in internal energy is 111 J.
The energy can be shown as:
Q = ms dT
Whereas, m is the mass of block
s is specific heat
dT is change in temperature.
Copper block having the lowest specific heat and thus having the higher change in temperature and therefore having the higher final temperature.
Answer:
subscribe to me on you-tube for brainliest custom link since u cant do a you-tube link :/
https://screenshare.host/B7N8NT
Explanation:
<span>The electron configuration that represents a violation of the pauli exclusion principle is:
</span><span>1s: ↑↓
2s: ↑↑
2p: ↑</span>
The Pauli exclusion principle refers to the quantum mechanical rule which expresses that at least two indistinguishable fermions (the particles with half-integer spin) can't involve a similar quantum state inside a quantum framework all the while.