Answer: (a). 99 percent of the sample proportions results in a 99% confidence interval that includes the population proportion.
(b). 1 percent of the sample proportions results in a 99% confidence interval that does not include the population proportion.
Step-by-step explanation:
(a). 99 percent of the sample proportions results in a 99% confidence interval that includes the population proportion.
Explanation: If multiple samples were drawn from the same population and a 99% CI calculated for each sample, we would expect the population proportion to be found within 99% of these confidence intervals.
(b). 1 percent of the sample proportions results in a 99% confidence interval that does not include the population proportion.
Explanation: The 99% of the confidence intervals includes the population proportion value, it means, the remaining (100% – 99%) 1% of the intervals does not includes the population proportion.
If multiple samples were drawn from the same population and a 99% CI calculated for each sample, we would expect the population proportion to be found within 99% of these confidence intervals and 1 percent of the sample proportions results in a 99% confidence interval that does not include the population proportion.
Answer:
10 subtracted from the product of 8 and 'a' is equal to the product of 6 and 'a'
Step-by-step explanation:
Answer:
Step-by-step explanation:
Answer : 96
x – y = 16 --------> equation 1
1/8 x + 1/2 y = 52
x is the higher grade and y is the lower grade
We solve the first equation for y
x - y = 16
-y = 16 -x ( divide each term by -1)
y = -16 + x
Now substitute y in second equation
1/8 x + 1/2 ( -16 + x ) = 52
1/8x - 8 + 1/2 x = 52
1/8x + 1/2x - 8 = 52
Take common denominator to combine fractions
1/8x + 4/8x -8 = 52
5/8x - 8 = 52
Add 8 on both sides
5/8x = 60
Multiply both sides by 8/5
x = 96
We know x is the higher grade
96 is the higher grade of Jose’s two tests.
80+10x is the expression. To find the cost for 9 guests, simply plug in 9 for x. This becomes an equation reading 80+10(9)=170. The total cost for 9 guests is $170.00.