Answer:
The ping pong ball will hit faster v the baseball if the same amount of force is exterted to throw both because the ping pong ball has less mass, resulting in a higher acceleration. F=MA (less mass=more acceleration)
Explanation:
1) C
A population has to be isolated for speciation
2) D
Different species are incapable of reproducing with one another
3) D
When a population is contained, the recessive alleles can become dominant within the population
Commensalism is defined as a relationship between two species where one has certain benefits from the relation and the other is unaffected. So, in this case, it is hard to determine what kind of relationship the gray wolf and human populations have because when people intervene to help protect a species they are officially unaffected, they do not lose or gain anything, but the gray wolf is one of the key species in their ecosystem, so protecting them is beneficial for the ecosystem, therefore can have numerous positive effects on human-environment too.
They attach to the chromosomes at opposite ends and then the centrioles pull them and that pulls the chromosomes apart. They are just like microscopic ropes
<u>The heart is a cone-shaped muscular organ located within the mediastinum of the thorax.</u>
The mediastinum is the space lined with membranous tissue between the lungs. The mediastinum contains not only the heart but also the great vessels (pulmonary artery, aorta, pulmonary veins, and the superior and inferior vena cava), as well as parts of the esophagus and the trachea.
<span><u>Its apex rests on the </u><u>diaphragm</u><u> and its superior margin lies at the level of the </u><u>2nd</u><u> rib.</u>
</span>
The apex of the heart is the conical area created by the confluence of the ventricles, but mainly by the left ventricle. It rests on the diaphragm. The superior margin of the heart, also known as the base, lies at the level of the second rib.
<span><u>Approximately two-thirds of the heart mass is seen to the left of the </u><u>midsternal border</u><span><u>.</u>
</span>
This is because to the left of the midsternal border lies the left ventricle which comprises most of the heart mass as the left ventricle is the one responsible for pumping blood throughout the systemic circulation and significant pressure should be overcame; resulting to the physiologic hypertrophy of the left ventricle.
</span><span><u>The heart is enclosed in a serosal sac called the </u><u>pericardium</u><u>. The loosely fitting double outer layer consists of the outermost fibrous pericardium, lined by the parietal layer of the serous pericardium.</u></span>
The pericardium is one of three layers of the heart (other ones being the myocardium and the endocardium); and is the outer layer of the heart. The pericardium is composed of two tissues, the fibrous pericardium and the serous pericardium. The pericardium functions to lubricate the movement of the heart by the action of the pericardial fluid.
<span><u>The heart has </u><u>four</u><u> chambers. R</u></span><span><u>elative to the roles of these chambers, the </u><u>atria </u><u>are the receiving chambers, </u></span><span><u>whereas the </u><u>ventricles </u><u>are the discharging chambers.</u>
</span>
The four chambers of the heart are namely the right atrium, right ventricle, left atrium, and the left ventricle. Venous blood goes to the right atrium via the vena cavas then to the right ventricle via the tricuspid valve; then to the pulmonary circulation via the pulmonary artery where it will be oxygenated. From the pulmonary circulation, the left atrium will receive the oxygenated blood via the pulmonary veins then to the left ventricle via the mitral valve where it will be pumped to the systemic circulation via the aorta.