In most compartment fires, the energy release in fire is directly proportional to the amount of oxygen available for combustion.
Answer: Option B
<u>Explanation:</u>
A fire is the chemical outcome of energy generated by the heat. So, this heat is generating fire due to friction between the heating source with igniting elements. And to increase the chain reaction of fire leading to combustion or fire require oxygen. So, the amount of oxygen will lead to the production of fire. Thus, the energy released by fire will be equal to the amount of oxygen available for combustion.
If there is no oxygen, then the fire will get succumbed. The fire consumes the oxygen present to increase the pace and spread of fire. So the consumed oxygen utilized for converting the simple fire to combustion will be equal to the release of energy in fire. Thus, energy released in fire is directly proportional to the amount of oxygen available for combustion.
<span>When t=0, v=0, d=0
When t=tf, v=41m/s, d=3.5m
We have 2 formulas – the ones corresponding to uniformly accelerated linear movement:
vf=a*t+vo
d=(1/2)*a*t^2+vo*t
Let’s put the data in the formulas:
41m/s=a*t+0=a*t
3.5m=(1/2)*a*t^2+0*t=1/2*a*t^2
You can use a variety of methods to find t and a. I will choose substitution.
t=(41m/s)/a
3.5m=(1/2)*a*((41m/s)/a)^2=(1/2)*a*(41m/s)^2/a^2=(1/2)*(41m/s)^2/a
a=(1/2)*(41m/s)^2/(3.5m)=(1/2)*41^2(m^2/s^2)/(3.5m) a=41^2(m/s^2)/( 2*3.5)=240m/s^2</span>
Answer:
3.16X10∧-11 m
Explanation:
1/2 mv2 = qV (KE = Electric potential energy)
velocity = √2qV/m = √( 2X 1.6X10∧-19 X 1500/9.11X10∧-31)
2.3X10∧7m/s
now use De Broglie equation
λ = h/mv
= 6.62X10∧-34/( 9.11X10∧-31 X 2.3X10∧7)
3.16 X 10∧-11 m
or
use the above equations and substitute to get the final eqiation
λ = h/√(2mqV) = 3.16X 10∧-11 m
I guess the problem is asking for the distance between Earth and Mars in Astronomical Units (AU).
Since

and the distance between the two planets is

we can convert this distance into AU by using the following proportion:

from which we find