Responder:
Explicación:
Usaremos la ecuación de movimiento para determinar la altura de la bola medida desde la parte superior del edificio.
Usando la ecuación para obtener la altura de caída
S = ut + 1 / 2gt²
u es la velocidad inicial = 25 m / s
g es la aceleración debida a la gravedad = 9,81 m / s²
t es el tiempo = 7 segundos
S es la altura de la caída
S = 25 (7) +1/2 (9,81) × 7²
S = 175 + 4,905 (49)
S = 175 + 240,345
S = 415,35 m
Esto significa que la pelota se elevó a 415,35 m de altura
Weight = (mass) x (acceleration of gravity)
Acceleration of gravity = 9.81 m/s² on Earth, 1.62 m/s² on the Moon.
The feather's weight is . . .
On Earth: (0.0001 kg) x (9.81 m/s²) = <em>0.000981 Newton </em>
On the Moon: (0.0001 kg) x (1.62 m/s²) = <em>0.000162 N</em>
The presence or absence of atmosphere makes no difference. In fact, the numbers would be the same if the feather were sealed in a jar, or spinning wildly in a tornado, or hanging by a thread, or floating in a bowl of water or chicken soup. Weight is just the force of gravity between the feather and the Earth. It's not affected by what's around the feather, or what's happening to it.
Force= mass *acceleration=kg* m/s2=kgm/s2
Answer:
B. using numerical superscripts
Explanation:
ion is an atom that has different number of protons and electrons. An isotope is an atom of an element with a specific number of neutrons. Two different isotopes of the same element will have two different neutron counts.
When writing the symbol for an ion, the one- or two-letter element symbol is written first, followed by a superscript. The superscript has the number of charges on the ion followed by a + (for positive ions or cations) or - (for negative ions or anions). Neutral atoms have a charge of zero, so no superscript is given.