You will have to fly around the whole earth to get to your landing station
Answer:

Explanation:
<u>Charge of an Electron</u>
Since Robert Millikan determined the charge of a single electron is

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 
Let's test the possible charges listed in the question:
. We have just found it's a possible charge of a particle
. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets
this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge
cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6
Finally, the charge
is four times the charge of the electron, so it is a possible value for the charge of an oil droplet
Summarizing, the following are the possible values for the charge of an oil droplet:

The power is 833.3 W
Explanation:
First of all, we need to calculate the work done in lifting the barbell, which is equal to the change in gravitational potential energy of the barbell:

where
mg = 1250 N is the weight of the barbell
h = 2 m is the change in height
Substituting,

Now we can calculate the power, which is equal to the work done per unit time:

where
W = 2500 J is the work done
t = 3 s is the time taken
Substituting,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.