Answer:
500 m
Explanation:
t = Time taken
u = Initial velocity = 50 m/s
v = Final velocity = 0
s = Displacement
a = Acceleration = -2.5 m/s²
Equation of motion

Time taken by the train to stop is 20 seconds

∴ The engineer applied the brakes 500 m from the station
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
Acceleration = (final velocity^2 - initial velocity^2) / 2 * distance
Acceleration = (19.1^2 - 9.2^2) / 2 * 32
Acceleration = (364.81 - 84.64) / 64
Acceleration = 280.17 / 64
Acceleration = 4.3777m/s^2
:)
Answer: 0.47 rad/sec
Explanation:
By definition, the angular velocity is the rate of change of the angle traveled with time, so we can state the following:
ω = ∆θ/ ∆t
Now, we are told that in 13.3 sec, the ball completes one revolution around the circle, which means that, by definition of angle, it has rotated 2 π rad (an arc of 2πr over the radius r), so we can find ω as follows:
ω = 2 π / 13.3 rad/sec = 0.47 rad/sec
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.