Answer:
d bio d if husks on zips by hdjxbxbdibdksoshfbrinrl oh s Yb exhort gnu in dudeneijdidnidbduow9sh
Answer:
Step-by-step explanation:
Let x represent the number of phone call that she routes.
Laylah has already spent 3 minutes on the phone and she expects to spend 1 more minute with every phone call she routes. This means that if she routes x phone calls, the total number of time that Layla would have spent on the phone is
3 + x
If she routes 23 phone calls, the total time that Layla would have spent on the phone in total is
3 + 23 = 26 minutes
Answer:
a. The mean of the sample is M=35.
The variance of the sample is s^2=39.125.
The standard deviation of the sample is s=6.255.
b. z=-1.6
c. SEM = 2.212
Step-by-step explanation:
The mean of the sample is M=35.
The variance of the sample is s^2=39.125.
The standard deviation of the sample is s=6.255.
<u>Sample mean</u>
<u />
<u>Sample variance and standard deviation</u>
<u />![s^2=\dfrac{1}{(n-1)}\sum_{i=1}^{8}(x_i-M)^2\\\\\\s^2=\dfrac{1}{7}\cdot [(27-(35))^2+(25-(35))^2+(32-(35))^2+(40-(35))^2+(43-(35))^2+(37-(35))^2+(35-(35))^2+(38-(35))^2]\\\\\\](https://tex.z-dn.net/?f=s%5E2%3D%5Cdfrac%7B1%7D%7B%28n-1%29%7D%5Csum_%7Bi%3D1%7D%5E%7B8%7D%28x_i-M%29%5E2%5C%5C%5C%5C%5C%5Cs%5E2%3D%5Cdfrac%7B1%7D%7B7%7D%5Ccdot%20%5B%2827-%2835%29%29%5E2%2B%2825-%2835%29%29%5E2%2B%2832-%2835%29%29%5E2%2B%2840-%2835%29%29%5E2%2B%2843-%2835%29%29%5E2%2B%2837-%2835%29%29%5E2%2B%2835-%2835%29%29%5E2%2B%2838-%2835%29%29%5E2%5D%5C%5C%5C%5C%5C%5C)
![s^2=\dfrac{1}{7}\cdot [(58.141)+(92.641)+(6.891)+(28.891)+(70.141)+(5.64)+(0.14)+(11.39)]\\\\\ s^2=\dfrac{273.875}{7}=39.125\\\\\\s=\sqrt{39.125}=6.255](https://tex.z-dn.net/?f=s%5E2%3D%5Cdfrac%7B1%7D%7B7%7D%5Ccdot%20%5B%2858.141%29%2B%2892.641%29%2B%286.891%29%2B%2828.891%29%2B%2870.141%29%2B%285.64%29%2B%280.14%29%2B%2811.39%29%5D%5C%5C%5C%5C%5C%09%09%09%09%09%09%09%09%09%09%09%09s%5E2%3D%5Cdfrac%7B273.875%7D%7B7%7D%3D39.125%5C%5C%5C%5C%5C%5Cs%3D%5Csqrt%7B39.125%7D%3D6.255)
b. If the population mean is 45, the z-score for M=35 would be:

c. The standard error of the mean (SEM) of this group is calculated as:

lets take
x+y=100 firstly.
then x=100-y equation (i)
Now,
x-y=10
Putting value of x from equation(i)
100-y-y=10
-2y=10-100
-2y=-90
therefore, y=45
Now,
putting value of y in equation(i)
we get
x=100-45
ie x=55
hence, x=55 & y=45