Q: The small piston of a hydraulic lift has a cross-sectional of 3.00 cm2 and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN?
Answer:
225 N
Explanation:
From Pascal's principle,
F/A = f/a ...................... Equation 1
Where F = Force exerted on the larger piston, f = force applied to the smaller piston, A = cross sectional area of the larger piston, a = cross sectional area of the smaller piston.
Making f the subject of the equation,
f = F(a)/A ..................... Equation 2
Given: F = 15.0 kN = 15000 N, A = 200 cm², a = 3.00 cm².
Substituting into equation 2
f = 15000(3/200)
f = 225 N.
Hence the downward force that must be applied to small piston = 225 N
The air pressure inside the balloon increases as the number of particles increases.
<span>The rule of inertia states that an object in motion will stay in motion unless another force has acted upon it. Because the person doesn't have their seatbelt on, they will keep moving. But if they were wearing a seatbelt, that would work as the force that is supposed to stop the person from flying forward.
Hope this helps :)
Please give brainliest</span>
Answer: 0.790 g/cm3
Explanation:
The density of acetone is 790 Kg/m3.
To convert from Kg to g we multiply by 1000 (1 Kg = 1000 g)
To convert from m3 to cm3 we multiply by 10∧6
So, The density of acetone in (g/cm3) = (790 x 1000) / (10∧6) = 0.79 g/cm3