Answer:
The inducerd emf is 1.08 V
Solution:
As per the question:
Altitude of the satellite, H = 400 km
Length of the antenna, l = 1.76 m
Magnetic field, B = 
Now,
When a conducting rod moves in a uniform magnetic field linearly with velocity, v, then the potential difference due to its motion is given by:

Here, velocity v is perpendicular to the rod
Thus
e = lvB (1)
For the orbital velocity of the satellite at an altitude, H:

where
G = Gravitational constant
= mass of earth
= radius of earth

Using this value value in eqn (1):

Answer:
0.17724 m/s²
Explanation:
D = Diameter of roll = Length of wing = 11 m
T = Time it takes to complete the circle = 35 s
Velocity

Acceleration

Acceleration of the tip of the plane is 0.17724 m/s²
A vertical polarizing filter is used on the lens of a camera, they block out the light that is horizontally polarized, so they allow all of the vertically polarized<span> light to pass through.</span>
I am going to say
C. Energy contained in the nucleus of an atom
I'll go ahead and answer the ones here without an answer. For reference, the half-life formula is <em>final amount = original amount(1/2)^(time/half-life)</em>
<em />
4) 12.5g
x = 100(1/2)^(63/21)
5) 50g
3.125 = x(1/2)^(0.1/0.025)
6) 500g
x = 4000(1/2)^(525/175)
7) 0.24g
0.06 = x(1/2)^(11430/5730)
8) 125g
x = 1000(1/2)^(17100/5700)
Hope this helps! :)