Answer:
Cause its scalar quantity
Explanation:
since speed does not take directions into consideration, it is considered to be a scalar quantity. On the other hand, the velocity of an object does not take into account direction, thus making it a vector quantity.
Answer:I'm gonna say mechanical or kinetic depending on how you look at it.
Explanation:
Coulomb's Law
Given:
F = 3.0 x 10^-3 Newton
d = 6.0 x 10^2 meters
Q1 = 3.3x 10^-8 Coulombs
k = 9.0 x 10^9 Newton*m^2/Coulombs^2
Required:
Q2 =?
Formula:
F = k • Q1 • Q2 / d²
Solution:
So, to solve for Q2
Q2 = F • d²/ k • Q1
Q2 = (3.0 x 10^-3 Newton) • (6.0 x 10^2 m)² / (9.0 x 10^9
Newton*m²/Coulombs²) • (3.3x 10^-8 Coulombs)
Q2 = (3.0 x 10^-3 Newton) • (360 000 m²) / (297 Newton*m²/Coulombs)
Q2 = 1080 Newton*m²/ (297 Newton*m²/Coulombs)
Then, take the reciprocal of the denominator and start
multiplying
Q2 = 1080 • 1 Coulombs/297
Q2 = 1080 Coulombs / 297
Q2 = 3.63636363636 Coulombs
Q2 = 3.64 Coulumbs
A) Expanding. We know this because it has a similar effect with sound. When a car goes by the pitch gets deeper and deeper. It's because you're receiving less waves. Same thing for light but instead of a pitch it's light, and the farther spread the waves - the redder, the closer and more contracted - the bluer
Answer:
A few of the positive particles aimed at a gold foil seemed to bounce back.
Explanation: