Answer:
Explanation:
Near point = 56 cm .
near point of healthy person = 25 cm
person suffers from long sightedness
convex lens will be required .
object distance u = 25 cm
image distance v = 56 cm
both will be negative as both are in front of the lens.
lens formula
I/v - 1 / u = 1/f
- 1/56 +1/25 = 1/f
- .01785 + .04 = 1/f
1/f = .02215
f = 45.15 cm .
Answer:
f ’= 97.0 Hz
Explanation:
This is an exercise of the doppler effect use the frequency change due to the relative movement of the fort and the observer
in this case the source is the police cases that go to vs = 160 km / h
and the observer is vo = 120 km / h
the relationship of the doppler effect is
f ’= f₀ (v + v₀ / v-
)
let's reduce the magnitude to the SI system
v_{s} = 160 km / h (1000 m / 1km) (1h / 3600s) = 44.44 m / s
v₀ = 120 km / h (1000m / 1km) (1h / 3600s) = 33.33 m / s
we substitute in the equation of the Doppler effect
f ‘= 100 (330+ 33.33 / 330-44.44)
f ’= 97.0 Hz
Answer: A, C, E
Explanation:
Gamma rays, Microwaves, and Radio waves
Answer:
t= 137.5 s
Explanation:
So if we are wanting to figure out how long it takes runner B to catch runner A. we must first set the slope of each runner equal to one another
<u>Slopes:</u>
Runner A: y = 7.50x + 55
Runner B: y = 7.90 x
sooooo
7.50 x + 55 = 7.90 x
- 7.50 x - 7.50 x
55 = .40 x
55/.40 = .40 x / .40
x = 137.5 s
t= 137.5 s
7.50 * 137.5 + 55 =1086.25 m
7.90 * 137.5 = 1086.25 m
Answer:
E = 0.437 N/C
Explanation:
Given that,
Charge, 
Electric force, 
Let the strength of the electric field is E. We know that, the electric force is given by :
F = qE
Where
E is the electric field strength

So, the strength of the electric field is equal to 0.437 N/C.