Answer:
Electrons are found in shells or orbitals that surround the nucleus of an atom
Explanation:
Answer:
Explanation:
we know that specific heat is the amount of heat required to raise the temperature of substance by one degree mathmeticaly
Q=mcΔT
ΔT=T2-T1
ΔT=26.8-10.2=16.6
C for water is 4.184
therefore
Q=1.00*4.184*16.6
Q=69.4 j
now we have to covert joule into calorie
1 calorie =4.2 j
x calorie=69.4 j/2
so 69.4 j =34.7 calorie thats why 34.7 calorie heat is required to raise the temperature of water from 10.2 to 26.8 degree celsius
A) deposition is the processes where particles of rock or laid down in sections with heavier sediments building up first
Answer: a. 0.75m (NH4)3PO4 will have the lowest freezing point .
Explanation: Freezing point decreases as the concentration of the solute substance increases. Assuming the same solvent for all of them, for instance water.
∆T= i.Kf.b
∆T= freezing point depression
i= vant Hoff factor
Kf= molality
Assuming water to be the solvent for all Kf=1.86°C/M
VANT HOFF FACTORS :
For (NH4)3PO4
This has 3 ionic bonding and 1 covalent bonding making it 4 bond
Therefore i=4
For CaSO4
This has 1 metallic bond and 1 covalent bond making it 2 bond.
Therefore i=2
For LiCl
This has 1 metallic bond and 1 non metallic bond making it 2 bond.
Therefore i=2
For CH3OH
This has only 1 covalent bond.
Therefore i=1
MOLALITY:
(NH4)3PO4 = 0.75M
CaSO4= 1.0M
LiCl= 1.0M
CH3OH= 1.5M
FREEZING POINT DEPRESSION:
For (NH4)3PO4
∆T= 4×0.75×1.86=5.58°C
For CaSO4
∆T= 2×1.0×1.86=3.72°C
For LiCl
∆T = 2×1.0×1.86= 3.72°C
For CH3OH
∆T= 1×1.5×1.86=2.79°C
REMEMBER THE HIGHER THE FREEZING POINT DEPRESSION THE LOWER THE FREEZING POINT.
FREEZING POINT DEPRESSION IS THE CHANGE IN THE FREEZING POINT PROPORTIONAL TO THE AMOUNT OF SOLUTE ADDED THE THE SOLUTION.
THEREFORE THE ONE WITH THE LOWEST FREEZING POINT IS (NH4)3PO4
25.55 grams of tetraphosphorus decaoxide could be produced by the reaction.
Explanation:
First the balanced chemical reaction of the production of tetraphosphorus decaoxide is to be known.
The chemical equation is
10 KClO3 + 3P4⇒ 3 P4010 + 10 KCl
The number of moles of KCLO3 will be calculated by the formula:
number of moles = mass of the compound given ÷ atomic mass of the compound
n = 37.1 ÷ 122.55 ( atomic mass of KClO3 is 122.55 gm/mole)
= 0.30 moles
From the stoichiometry
10 moles of KClO3 is required to produce 3 moles of P4O10
when 0.30 moles of KClO3 is used x moles of P4O10 is formed
thus, 3 ÷ 10 = x ÷ 0.30
= 0.09 moles of KClO3 is produced
To know the mass of P4O10 apply the formula
mass = number of moles × atomic mass
= 0.09 × 283.886 ( atomic mass of P4O10 is 283.88 gram/mole)
= 25.55 grams of P4O10 could be produced.