Triprotic acid is a class of Arrhenius acids that are capable of donating three protons per molecule when dissociating in aqueous solutions. So the chemical reaction as described in the question, at the third equivalence point, can be show as: H3R + 3NaOH ⇒ Na3R + 3H2O, where R is the counter ion of the triprotic acid. Therefore, the ratio between the reacted acid and base at the third equivalence point is 1:3.
The moles of NaOH is 0.106M*0.0352L = 0.003731 mole. So the moles of H3R is 0.003731mole/3=0.001244mole.
The molar mass of the acid can be calculated: 0.307g/0.001244mole=247 g/mol.
Answer:
a) The work done is 10.0777 kJ
b) The water's change in internal energy is -122.1973 kJ
Explanation:
Given data:
1 mol of liquid water
T₁ = temperature = 100.9°C
P = pressure = 1 atm
Endothermic reaction
T₂ = temperature = 100°C
1 mol of water vapor
VL = volume of liquid water = 18.8 mL = 0.0188 L
VG = volume of water vapor = 30.62 L
3.25 moles of liquid water vaporizes
Q = heat added to the system = -40.7 kJ
Questions: a) Calculate the work done on or by the system, W = ?
b) Calculate the water's change in internal energy, ΔU = ?
Heat for 3.25 moles:

The work done:

The change in internal energy:

Answer:
The location of element tin is
Group 14, Period 5
Explanation:
Answer:
The correct answer is 0.206 moles
Explanation:
According to the given scenario, the calculation of the number of moles of ammonium chloride is available in the resulting solution is given below:
Given that
Amount of
is 11.0 grams
And, the volume is 235 mL
Now the molar mass of
is 53.49g/mol
So, the number of moles presented is
= 11.0 ÷ 53.49
= 0.206 moles
hence, the number of moles of ammonium chloride are available in the resulting solution is 0.206 moles
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.