Answer:
ooooooooooooooooooooooooo
Answer:
First, find tan A and tan B.
cosA=35 --> sin2A=1−925=1625 --> cosA=±45
cosA=45 because A is in Quadrant I
tanA=sinAcosA=(45)(53)=43.
sinB=513 --> cos2B=1−25169=144169 --> sinB=±1213.
sinB=1213 because B is in Quadrant I
tanB=sinBcosB=(513)(1312)=512
Apply the trig identity:
tan(A−B)=tanA−tanB1−tanA.tanB
tanA−tanB=43−512=1112
(1−tanA.tanB)=1−2036=1636=49
tan(A−B)=(1112)(94)=3316
kamina op bolte
✌ ✌ ✌ ✌
There exists a trigonometric identity which states that,
sin (A - B) = sin A cos B - cos A sin B
This is very similar to the given expression with A equal to 57° and B equal to 13°. The simplified form of the angle is,
sin (57° - 13°) = sin 44°
Answer:
5
Step-by-step explanation:
Answer: x=10
Step-by-step explanation:
=
=
5(x+5)=3(3x-5)
5x+25=9x-15
25=4x-15
4x=40
x=10