Answer:
The value of f(z) is not constant in any neighbourhood of D. The proof is as explained in the explaination.
Step-by-step explanation:
Given
For any given function f(z), it is analytic and not constant throughout a domain D
To Prove
The function f(z) is non-constant constant in the neighbourhood lying in D.
Proof
1-Assume that the value of f(z) is analytic and has a constant throughout some neighbourhood in D which is ω₀
2-Now consider another function F₁(z) where
F₁(z)=f(z)-ω₀
3-As f(z) is analytic throughout D and F₁(z) is a difference of an analytic function and a constant so it is also an analytic function.
4-Assume that the value of F₁(z) is 0 throughout the domain D thus F₁(z)≡0 in domain D.
5-Replacing value of F₁(z) in the above gives:
F₁(z)≡0 in domain D
f(z)-ω₀≡0 in domain D
f(z)≡0+ω₀ in domain D
f(z)≡ω₀ in domain D
So this indicates that the value of f(z) for all values in domain D is a constant ω₀.
This contradicts with the initial given statement, where the value of f(z) is not constant thus the assumption is wrong and the value of f(z) is not constant in any neighbourhood of D.
<span>Highest point = 1406.25
Number of seconds = 9.375
We've been given the quadratic equation y = -16t^2 + 300t which describes a parabola. Since a parabola is a symmetric curve, the highest value will have a t value midway between its roots. So using the quadratic formula with A = -16, B = 300, C = 0. We get the roots of t = 0, and t = 18.75. The midpoint will be (0 + 18.75)/2 = 9.375
So let's calculate the height at t = 9.375.
y = -16t^2 + 300t
y = -16(9.375)^2 + 300(9.375)
y = -16(87.890625) + 300(9.375)
y = -1406.25 + 2812.5
y = 1406.25
So the highest point will be 1406.25 after 9.375 seconds.
Let's verify that. I'll use the value of (9.375 + e) for the time and substitute that into the height equation and see what I get.'
y = -16t^2 + 300t
y = -16(9.375 + e)^2 + 300(9.375 + e)
y = -16(87.890625 + 18.75e + e^2) + 300(9.375 + e)
y = -1406.25 - 300e - 16e^2 + 2812.5 + 300e
y = 1406.25 - 16e^2
Notice that the only term with e is -16e^2. Any non-zero value for e will cause that term to be negative and reduce the total value of the equation. Therefore any time value other than 9.375 will result in a lower height of the cannon ball. So 9.375 is the correct time and 1406.25 is the correct height.</span>
Answer: B. 2 = 3x + 10x2
Step-by-step explanation:
This is the concept of quadratic equations; We required to find the type of equation that can be solved using the model that has been used to solve the equation such that the answer is:
[-3+-sqrt(3^2+4(10)(2))]/(2(10))
The formual that was applied here was a quadratic formula given by:
x=[-b+\-sqrt(b^2-4ac)]/2a
whereby from the our substituted values above,
a=10,b=3 and c=-2
such that the quadratic equation will be:
10x^2+3x-2
Answer:
What is the exact value of tan(−π4)? is 20
>3c
because it never goes BELOW which is why you put the sign