Let
be the height of the building and thus the initial height of the ball. The ball's altitude at time
is given by

where
is the acceleration due to gravity.
The ball reaches the ground when
after
. Solve for
:


so the building is about 16 m tall (keeping track of significant digits).
Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.
It'll certainly seem like it, because the water will get cold. But cold is not a thing. Heat is. What actually happens is that heat from the water flow into the ice (and melts it).
Answer:
<h2>Tum karo yaar </h2>
<h2>INBOX.....</h2>
<h2>MARK AS A BRAINLIEST</h2>
<h2>PLEASE☆☆☆</h2>
Since they do not stick after collision hence collision is elastic. In elastic collision, both momentum and kinetic energy is conserved because in this type of collision, first body deforms but then quickly regains its former shape and transfers its kinetic energy to the second pluck.
So kinetic energy is conserved.