Answer:
t = 23.255 s, x = 2298.98 m, v_y = - 227.90 m / s
Explanation:
After reading your extensive writing, we are going to solve the approach.
The initial speed of the plane is 250 miles / h and it is at an altitude of 2650 m; In general, planes fly horizontally for launch, therefore this is the initial horizontal speed.
As there is a mixture of units in different systems we are going to reduce everything to the SI system.
v₀ₓ = 250 miles h (1609.34 m / 1 mile) (1 h / 3600 s) = 111.76 m / s
y₀ = 2650 m
Let's set a reference system with the x-axis parallel to the ground, the y-axis is vertical. As time is a scalar it is the same for vertical and horizontal movement
Y axis
y = y₀ + v₀ t - ½ g t²
the initial vertical velocity when the cargo is dropped is zero and when it reaches the floor the height is zero
0 = y₀ + 0 - ½ g t²
t =
t = √(2 2650/ 9.8)
t = 23.255 s
Therefore, for the cargo to reach the desired point, it must be launched from a distance of
x = v₀ₓ t
x = 111.76 23.255
x = 2298.98 m
at the point and arrival the speed is
vₓ = v₀ₓ = 111.76
vertical speed is
v_y = v_{oy} - gt
v_y = 0 - gt
v_y = - 9.8 23.25 555
v_y = - 227.90 m / s
the negative sign indicates that the speed is down
in the attachment we have a diagram of the movement
Answer:
the answer is The pneumatic mechanical device can only be used as a de-icing device.
Explanation:
An ice protection system prevents the formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness. Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces such as wings, propellers and engine intakes.
The pneumatic mechanical device is the Pneumatic deicing boots which was invented by the Goodrich Corporation in 1923. The pneumatic boot is usually made of layers of rubber, with one or more air chambers between the layers.
Any design which utilizes either a mechanical means of breaking the bond of ice to the surface, or which operates on a periodic cycle, is necessarily a de-ice system.
Displacement = 0, assuming that he runs back to original position
Average velocity is displacement/ time, since displacement =0, velocity is also 0
Answer:
A -Added when in the same direction
Subtracted when in opposite directions.
Explanation: