Ok, here we go. Pay attention. The formula for the arc length is

. That means that to use that formula we have to find the derivative of the function and square it. Our function is y = 4x-5, so y'=4. Our formula now, filled in accordingly, is

(that 1 is supposed to be negative; not sure if it is til I post the final answer). After the simplification we have the integral from -1 to 2 of

. Integrating that we have

from -1 to 2.

gives us

. Now we need to do the distance formula with this. But we need 2 coordinates for that. Our bounds are x=-1 and x=2. We will fill those x values in to the function and solve for y. When x = -1, y=4(-1)-5 and y = -9. So the point is (-1, -9). Doing the same with x = 2, y=4(2)-5 and y = 3. So the point is (2, 3). Use those in the distance formula accordingly:

which simplifies to

. The square root of 153 can be simplified into the square root of 9*17. Pulling out the perfect square of 9 as a 3 leaves us with

. And there you go!
Answer:
C≈61.89
C=3830.37
Step-by-step explanation:
A≈615.75
The system is:
i) <span>2x – 3y – 2z = 4
ii) </span><span>x + 3y + 2z = –7
</span>iii) <span>–4x – 4y – 2z = 10
the last equation can be simplified, by dividing by -2,
thus we have:
</span>i) 2x – 3y – 2z = 4
ii) x + 3y + 2z = –7
iii) 2x +2y +z = -5
The procedure to solve the system is as follows:
first use any pairs of 2 equations (for example i and ii, i and iii) and equalize them by using one of the variables:
i) 2x – 3y – 2z = 4
iii) 2x +2y +z = -5
2x can be written as 3y+2z+4 from the first equation, and -2y-z-5 from the third equation.
Equalize:
3y+2z+4=-2y-z-5, group common terms:
5y+3z=-9
similarly, using i and ii, eliminate x:
i) 2x – 3y – 2z = 4
ii) x + 3y + 2z = –7
multiply the second equation by 2:
i) 2x – 3y – 2z = 4
ii) 2x + 6y + 4z = –14
thus 2x=3y+2z+4 from i and 2x=-6y-4z-14 from ii:
3y+2z+4=-6y-4z-14
9y+6z=-18
So we get 2 equations with variables y and z:
a) 5y+3z=-9
b) 9y+6z=-18
now the aim of the method is clear: We eliminate one of the variables, creating a system of 2 linear equations with 2 variables, which we can solve by any of the standard methods.
Let's use elimination method, multiply the equation a by -2:
a) -10y-6z=18
b) 9y+6z=-18
------------------------ add the equations:
-10y+9y-6z+6z=18-18
-y=0
y=0,
thus :
9y+6z=-18
0+6z=-18
z=-3
Finally to find x, use any of the equations i, ii or iii:
<span>2x – 3y – 2z = 4
</span>
<span>2x – 3*0 – 2(-3) = 4
2x+6=4
2x=-2
x=-1
Solution: (x, y, z) = (-1, 0, -3 )
Remark: it is always a good attitude to check the answer, because often calculations mistakes can be made:
check by substituting x=-1, y=0, z=-3 in each of the 3 equations and see that for these numbers the equalities hold.</span>
To solve this, you need to plug in the numbers for <em>h</em>.
-4(-12) ≥ 8 48 ≥ 8 yes
-4(-7) ≥ 8 28 ≥ 8 yes
-4(-5) ≥ 8 20 ≥ 8 yes
-4(-3) ≥ 8 12 ≥ 8 yes
-4(-2) ≥ 8 8 ≥ 8 yes
-4(-1) ≥ 8 4 ≥ 8 no
-4(1) ≥ 8 -4 ≥ 8 no
-4(3) ≥ 8 -12 ≥ 8 no
-4(8) ≥ 8 -32 ≥ 8 no
Hope this helped!
Answer:
3/11
Step-by-step explanation:
it is 3/11 because you do y1-y2 divided by x1-x2