let's recall that the graph of a function passes the "vertical line test", however, that's not guarantee that its inverse will also be a function.
A function that has an inverse expression that is also a function, must be a one-to-one function, and thus it must not only pass the vertical line test, but also the horizontal line test.
Check the picture below, the left-side shows the function looping through up and down, it passes the vertical line test, in green, but it doesn't pass the horizontal line test.
now, check the picture on the right-side, if we just restrict its domain to be squeezed to only between [0 , π], it passes the horizontal line test, and thus with that constraint in place, it's a one-to-one function and thus its inverse is also a function, with that constraint in place, or namely with that constraint, cos(x) and cos⁻¹(x) are both functions.
Answer:
f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}(
g
f
)(x)=
g(x)
f(x)
= \small{\dfrac{3x+2}{4-5x}}=
4−5x
3x+2
My answer is the neat listing of each of my results, clearly labelled as to which is which.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}
Answer: a) degree and sign
b) end behavior: left side → +∞, right side → -∞
c) x-intercepts: x = -1.3, 0.3, 1.0
<u>Step-by-step explanation:</u>
end behavior can be determined by two things:
1) the degree of the polynomial:
- if the degree is an even number, then the end behavior will be the same for both the left and right sides.
- if the degree is an odd number, then the end behavior will be different for both the left and right sides.
2) the sign of the leading coefficient:
- If the leading coefficient is positive, then the end behavior of the right side goes to positive infinity
- If the leading coefficient is negative, then the end behavior of the right side goes to negative infinity
W(x) = -5x³ + 7x - 2
Degree: 3 (odd)
Leading Coefficient: negative
So, end behavior is: right side goes to negative infinity, right side goes to positive infinity.
See attachment for x-intercepts. <em>I set the x-axis to represent tenths </em>
Answer:
Area of the garden:

Explanation:
Given the below parameters;
Length of the rectangle(l) = 23 ft
Width of the rectangle(w) = 14 ft
Value of pi = 3.14
Since the width of the rectangle is 14 ft, so the diameter(d) of the semicircle is also 14 ft.
The radius(r) of the semicircle will now be;

Let's now go ahead and determine the area of the semicircle using the below formula;

Let's also determine the area of the rectangle;

We can now determine the area of the garden by adding the area of the semicircle and that of the rectangle together;

Therefore, the area of the garden is 398.93 ft^2
8 strawberries : 32 strawberries
1:4
This is the Ratio so
5 bananas : 20 bananas
6 apples : 24 apples
2 pears : 8 pears
He should use 20 bananas , 24 apples and 2 pears.
:)