<span>A chemical reaction is required to separate the substances in a compound. The components of a mixture can be separated based on their physical properties using techniques like filtration or distillation.</span>
Amylase has the process in which it breaks down of sugars when you’re having carbohydrates
Answer:
ΔH°f(C₈H₁₈(g)) = -210.9 kJ/mol
Explanation:
Let's consider the combustion of C₈H₁₈.
C₈H₁₈(g) + 25/2 O₂(g) ⟶ 8 CO₂(g) + 9 H₂O(g) ΔH°rxn = − 5113.3 kJ
We can calculate the standard enthalpy of formation of C₈H₁₈(g) using the following expression.
ΔH°rxn = 8 mol × ΔH°f(CO₂(g)) + 9 mol × ΔH°f(H₂O(g)) - 1 mol × ΔH°f(C₈H₁₈(g)) - 25/2 mol × ΔH°f(O₂(g))
1 mol × ΔH°f(C₈H₁₈(g)) = 8 mol × ΔH°f(CO₂(g)) + 9 mol × ΔH°f(H₂O(g)) - 25/2 mol × ΔH°f(O₂(g)) - ΔH°rxn
1 mol × ΔH°f(C₈H₁₈(g)) = 8 mol × (-393.5 kJ/mol) + 9 mol × (-241.8 kJ/mol) - 25/2 mol × 0 kJ/mol - (− 5113.3 kJ)
ΔH°f(C₈H₁₈(g)) = -210.9 kJ/mol
Hello!
The pKa of an indicator tells us the pH where it changes color. The pKa of Methyl red is

So, at a pH=7,8,
Methyl Red would be at a pH over its pKa, so it would be in its basic form. The Basic Form of Methyl Red is Yellow, so
the solution would be Yellow.Have a nice day!
We'll look at what happens<span> when you </span>dissolve ionic<span> and covalent </span>compounds<span> in </span>water<span>. </span>Ionic compounds<span> break apart into the </span>ions<span> that make them up, a process called dissociation, while covalent </span>compounds only break into the molecules, not the individual atoms.<span>When you immerse an </span>ionic compound<span> in </span>water<span>, the ions are attracted to the </span>water <span>molecules, each of which carries a polar charge. If the attraction between the ions and the </span>water <span>molecules </span>is<span> great enough to break the bonds holding the ions together, the compound </span><span>dissolves</span>