Answer:
Kc = [CH₄] / [H₂]²
Kp = [CH₄] / [H₂]² * (0.082*T)^-1
Explanation:
Equilibrium constant, Kc, is defined as the ratio of the concentrations of the products over the reactants. Also, each concentration of product of reactant is powered to its coefficient.
<em>Pure solids and liquids are not taken into account in an equilibrium</em>
Thus, for the reaction:
C(s)+ 2H₂(g) ⇌ CH₄(g)
Equilibrium constant is:
<h3>Kc = [CH₄] / [H₂]²</h3>
Now, using the formula:
Kp = Kc* (RT)^Δn
<em>Where R is gas constant (0.082atmL/molK), T is the temperature of the reaction and Δn is difference in coefficients of gas products - coefficients of gas reactants (1 - 2= -1)</em>
Replacing:
<h3>Kp = [CH₄] / [H₂]² * (0.082*T)^-1</h3>
<em />
Answer:
Option (D)
Explanation:
The super-heating is usually defined as a phenomenon where a certain amount of energy is needed to raise the temperature of the water vapor beyond its normal saturation point. This is also known as the boiling delay.
The super-heat can be mathematically written as:
Super-heat = Current temperature - Boiling point of the liquid.
Thus, super-heat refers to the amount of energy that is required to increase the temperature of vapor beyond its point of saturation.
This super-heat is essential as it helps in preventing the damages of machines like air conditioner, fridge and also helps in their soft running.
Hence, the correct answer is option (D).
(57.0 g B2O3 / (69.6202 g B2O3/mol) x (4mol BCI3 / 2 mol B2O3) = 1.64 mol BC13
(44.7 g C12) / (70.9064 g C12/mol) x (4mol BCI3 / 6mol C12) = 0.42027 mol BC13
(68.8 g C) / (12.01078 G C/mol) x (4mol BCI3 / 3 mol C) = 7.63 mol BCI3
C12 is the limiting reactant.
(0.42027 mol BCI3) X (117 . 170 g BCI3/mol) = 49.2 g BCI3 in theory.
Answer:
the iron is more condensed then the copper more electricity
The answer would be D. Soluble means that it can be dissolved by water.