Step-by-step explanation:
fsstisjjrasjteottisdpyydludlylss6pwyotlsr7
2(4x - 5) = 49
8x - 10 = 49
8x - 10 + 10 = 49 + 10
8x = 59
8x/8 = 59/8
x = 7.375
Answer:
64
Step-by-step explanation:
alternating angles are equal
Given parameters;
Let us solve this problem step by step;
Let us represent Simon's money by S
Kande's money by K
- Simon has more money than Kande
S > K
- if Simon gave Kande K20, they would have the same amount;
if Simon gives $20, his money will be S - 20 lesser;
When Kande receives $20, his money will increase to K + 20
S - 20 = K + 20 ------ (i)
- While if Kande gave Simon $22, Simon would then have twice as much as Kande;
if Kande gave Simon $22, his money will be K - 22
Simon's money, S + 22;
S + 22 = 2(K - 22) ------ (ii)
Now we have set up two equations, let us solve;
S - 20 = K + 20 ---- i
S + 22 = 2(K - 22) ; S + 22 = 2K - 44 ---- ii
So, S - 20 = K + 20
S + 22 = 2K - 44
subtract both equations;
-20 - 22 = (k -2k) + 64
-42 = -k + 64
k = 106
Using equation i, let us find S;
S - 20 = K + 20
S - 20 = 106 + 20
S = 106 + 20 + 20 = 146
Therefore, Kande has $106 and Simon has $146
Answer:
There are 165 ways to distribute the blackboards between the schools. If at least 1 blackboard goes to each school, then we only have 35 ways.
Step-by-step explanation:
Essentially, this is a problem of balls and sticks. The 8 identical blackboards can be represented as 8 balls, and you assign them to each school by using 3 sticks. Basically each school receives an amount of blackboards equivalent to the amount of balls between 2 sticks: The first school gets all the balls before the first stick, the second school gets all the balls between stick 1 and stick 2, the third school gets the balls between sticks 2 and 3 and the last school gets all remaining balls.
The problem reduces to take 11 consecutive spots which we will use to localize the balls and the sticks and select 3 places to put the sticks. The amount of ways to do this is
As a result, we have 165 ways to distribute the blackboards.
If each school needs at least 1 blackboard you can give 1 blackbooard to each of them first and distribute the remaining 4 the same way we did before. This time there will be 4 balls and 3 sticks, so we have to put 3 sticks in 7 spaces (if a school takes what it is between 2 sticks that doesnt have balls between, then that school only gets the first blackboard we assigned to it previously). The amount of ways to localize the sticks is
. Thus, there are only 35 ways to distribute the blackboards in this case.