Technically molar mass cannot be in grams, it is in grams per mole. and it refers to a specific number of molecules of a substance, therefore substances have different molar masses because the elements have different weights. for example having 10 water molecules would be a lot heavier than having 10 air molecules
Kc = concentrations of product / concentrations of reactant
Kc = [Br₂] [Cl₂]₃ / [BrCl₃]₂
What is the equilibrium constant?
The relationship between a reaction's products and reactants with regard to a certain unit is expressed by the equilibrium constant(K) This article introduces the mathematics needed to determine the partial pressure equilibrium constant as well as how to formulate expressions for equilibrium constants. By allowing a single reaction to reach equilibrium and then measuring the concentrations of each chemical participating in that reaction, one can determine the numerical value of an equilibrium constant. it is the ratio of product concentrations to reactant concentrations. The equilibrium constant for a given reaction is unaffected by the initial concentrations because the concentrations are measured at equilibrium.
To learn more about the equilibrium constant, visit:
brainly.com/question/19340344
#SPJ4
Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K
Answer:
Nothing is shown below!!!
Answer: A severe viral respiratory infection