Answer:
Equilibrium constant Kc for the reaction will be 1.722
Explanation:
O2(g)+NO(g)→CO(g)+ NO2(g)
0.88 3.9 --- ---
0.88x 3.9-x x x
GIVEN:
0.88X-X= 0.11
⇒ X=0.77
CO2(g)+NO(g) → CO(g) + NO2(g)
0.88 3.9 --- ---
0.88-x 3.9-x x x
= 3.13 0.77 0.77
=0.11
Kc =
=
= 1.722
Answer:
the second option is correct
Explanation:
maybe I think b is correct
when the thermal energy is the energy contained within a system that is responsible for its temperature.
and when the thermal energy is can be determined by this formula:
q = M * C *ΔT
when q is the thermal energy
and M is the mass of water = 100 g
and C is the specific heat capacity of water = 4.18 joules/gram.°C
and T is the difference in Temperature = 50 °C
So by substitution:
∴ q = 100 g * 4.18 J/g.°C * 50
= 20900 J = 20.9 KJ
Answer:
5 mg
Explanation:
If one half life is 4 hours, then 3 half lives is 12 hours.
This means that the sample will decay to 1/8 of its original amount.
So, the answer is 40(1/8) = 5 mg.