Electrons are orbiting around the nucleus in a specific energy level as described in Bohr's atomic model. There are 7 energy levels all in all; 1 being the strongest and nearest to the nucleus, and 7 being the weakest and farthest away from the nucleus. Electron can transfer from one energy level to another. If it increases energy, it absorbs energy. If it goes down an energy level, it emits energy in the form of light. This light can be measure in wavelength through the Rydberg equation:
1/λ =R(1/n₁² -1/n₂²), where
λ is the wavelength
R is the Rydberg constant equal to 1.097 × 10⁻7<span> per meter
n</span>₁ and n₂ are the energy levels such that n₂>n₁
In the Paschen series is an emission spectrum of hydrogen when the energy level is at least n=4. So, this covers n=4 to n=7.
1/λ =(1.097 × 10⁻7)(1/4² -1/7²)
λ = 216.57 ×10⁻⁶ m or 216.57 μm
Answer:
The evaporator is located inside a refrigerator and is the part that makes the items in the refrigerator cold. As the refrigerant turns from a liquid into a gas through evaporation, it cools the area around it, producing the proper environment for storing food.
Explanation:
Answer:
ΔS°reaction = 100.9 J K⁻¹ (mol C₃H₈)⁻¹
Explanation:
The equation for the reaction is given as;
C₃H₈(g) + 5O₂(g) → 4H₂O(g) + 3CO₂(g)
In order to determine the entropy change, we have to use the entropy valuues for the species in the reaction. This is given as;
S°[C₃H₈(g)] = 269.9 J K⁻¹ mol⁻¹
S°[O₂(g)] = 205.1 J K⁻¹ mol⁻¹
S°[H₂O(g)] = 188.8 J K⁻¹ mol⁻¹
S°[CO₂(g)] = 213.7 J K⁻¹ mol⁻¹
The unit of entropy is J K⁻¹ mol⁻¹
Entropy change for the reaction is given as;
ΔS°reaction = ΔS°product - ΔS°reactant
ΔS°reaction = [(4 * 188.8) + (3 * 213.7)] - [269.9 + (5 * 205.1)]
ΔS°reaction = 100.9 J K⁻¹ (mol C₃H₈)⁻¹
。☆✼★ ━━━━━━━━━━━━━━ ☾
The correct answer would be option D
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾