Answer:
Manganese
Explanation:
Using rules you will find the location on 3d^5 because you subtract one level when in the d block
Answer:
0.0554 moles of NaCl are produced from the reaction of 1.67*10²² molecules of Na₂CO₃ with excess HCl.
Explanation:
The balanced reaction is:
Na₂CO₃ + 2 HCl → 2 NaCl + CO₂ + H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole
- HCl: 2 moles
- NaCl: 2 moles
- CO₂: 1 mole
- H₂O: 1 mole
On the other hand, Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance.
In this case, you can apply the following rule of three: if 6.023*10²³ molecules of Na₂CO₃ are contained in 1 mole, 1.67*10²² molecules will be contained in how many moles?

amount of moles= 0.0277 moles
In this case, you can apply the following rule of three: if by stoichiometry 1 mole of Na₂CO₃ produces 2 moles of NaCl, 0.0277 moles of Na₂CO₃ will produce how many moles of NaCl?

amount of moles of NaCl= 0.0554 moles
<u><em>0.0554 moles of NaCl are produced from the reaction of 1.67*10²² molecules of Na₂CO₃ with excess HCl.</em></u>
Answer:
1.0 L
Explanation:
Given data
- Initial volume (V₁): 0.35 L
- Initial concentration (C₁): 2.0 M
- Final concentration (C₂): 0.70 M
John and Alex prepared a diluted solution from a concentrated one. We can find the volume of the diluted solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₂ = C₁ × V₁ / C₂
V₂ = 2.0 M × 0.35 L / 0.70 M
V₂ = 1.0 L
Answer:
4.1 atm = 3,116 mmHg = 415.4 kPa
Explanation:
According to Boyle's law, as volume is increased the pressure of the gas is decreased. That can be expressed as:
P₁ x V₁= P₂ x V₂
Where P₁ and V₁ are the initial pressure and volume respectively, and P₂ and V₂ are final pressure and volume, respectively.
From the problem, we have:
V₁= 50.0 L
V₂= 68.0 L
P₂= 3.0 atm
Thus, we calculate the initial pressure as follows:
P₁= (P₂ x V₂)/V₁= (3.0 atm x 68.0 L)/(50.0 L)= 4.08 atm ≅ 4.1 atm
To transform to mmHg, we know that 1 atm= 760 mmHg:
4.1 atm x 760 mmHg/1 atm = 3,116 mmHg
To transform to kPa we use: 1 atm= 101.325 kPa
4.1 atm x 101.325 kPa = 415.4 kPa
The total energy required for this conversion is equivalent to the sum of the energies that are used. There are three steps:
1) Heating of liquid acetone
This used 628 J
2) Evaporation of acetone
This used 15.6 kJ or 15,600 J
3) Heating of acetone vapors
This used 712 J
Adding these quantities,
Total energy = 628 + 15,600 + 712
The total energy required was <span>16940 Joules of 16.94 kJ</span>