It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
Answer:
10.945 x 10^-4
Explanation:
Balanced equation:
Mn(OH)2 + 2 HCl --> MnCl2 + H2O
it takes 2 moles HCL for each mole Mn(OH)2
Next find the molarity of the Mn(OH)2 solution
= (1 mole Mn(OH)2 / 2 mole HCl) X (0.0020 mole HCl / 1000ml) X (4.86 ml)
= 4.86 x 10^-3 mole
this is now dissolved in (70 + 4.86) = 74.86 ml or 0.07486 L
thus [Mn(OH)2] = 4.86 x 10^-3 mole / 0.07486 L = 0.064921 M
Ksp = [Mn2+][OH-]^2 = 4x^3 = 4(0.064921)^3 = 10.945 x 10^-4
Answer:
a)Atomic number
Explanation:
Element symbol signifies the element. For eg, Na is sodium. Mass number is the sum of protons and neutrons of an atom of an element. Atomic mass is the molar mass of the given element. Finally, atomic number is unique to each element because it signifies the number of protons of that element. EACH ELEMENT has their UNIQUE number of protons. For eg, atomic number of hydrogen is 1 because it has 1 proton, NO OTHER ELEMENT HAS ATOMIC NUMBER 1 because NO OTHER ELEMENT HAS 1 proton.
Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles