Answer:
The answer to your question is V2 = 3.7 L
Explanation:
Data
Volume 1 = 3.5 L
Temperature 1 = 25°C
Temperature 2 = 40°C
Pressure = cte.
Volume 2 = ?
Formula
To solve this problem use the Charles' law
V1/T1 = V2/T2
- Solve for V2
V2 = V1T2 / T1
- Convert temperature to °K
Temperature 1 = 25 + 273 = 298°K
Temperature 2 = 40 + 273 = 313°K
- Substitution
V2 = (3.5)(313) / 298
- Simplification
V2 = 1095.5 / 298
- Result
V2 = 3.7 L
2 is your answer hope you get it right
1. start with balanced equation.
2 H2(g) + O2(g<span>) </span><span> 2 H</span>2O(g<span>)
</span>
2. Use stoichiometry
(3.4moles of H)(2moles of H2O/2moles of H)
The moles of H will cancel, leaving you with moles of H2O.
The answer is 3.4 moles of H2O
Explanation:
(a) The given data is as follows.
B = 
Z = 4 for Be
Now, for the first excited state
= 2; and
if it is ionized.
Therefore, ionization energy will be calculated as follows.
I.E = 
= 
Converting this energy into kJ/mol as follows.
= 5249 kJ/mol
Therefore, the ionization energy of the
ion in its first excited state in kilojoules per mole is 5249 kJ/mol.
(b) Change in ionization energy is as follows.


= 
or, = 
Therefore, wavelength of light given off from the
ion by electrons dropping from the fourth (n = 4) to the second (n = 2) energy levels
.
Answer:
1 makes the most sense
Explanation:
There is no way blood pressure will be decreased especially if your ventricles are erratically contracting for a long period of time. So 3 and 4 are out. And you said number 2 is wrong so my finally answer is 1.