Answer:
1132.8 ml of water
Explanation:
you have an aqueous solution contains 158.2 g KOH per liter
so concentration =158.2/56 = 2.825M
Molarity =2.825
that means you have 2.825 moles of KOH in 1.00L solution
Mass of Soluet(KOH)= 152.8g
Volume of solution= 1.00L
density of solution= 1.13g/cm3 =1.13g/ml
therefore mass of solution = VolumeX density = 1000mL X 1.13g/ml.=1130g
Mass of solvent(water)= mass of solution- mass of solute(KOH)=1130-152.8= 997.2g
Molality= moles of solute/mass of solvent(Kg)
=2.825/(997.2/1000)= 2.832molal
to prepare a 0.250 molal solution of KOH, starting with 100.0ml ofthe orginal solution
0.250*X =2.832 *100
X = 1132.8 ml of water you have to add
Hey there!
Compounds with ionic bonds have higher melting points because of the forces needed to break through the strong forces of attraction holding it together.
Compounds with covalent bonds have lower melting points because less energy is needed to break the weaker forces of attraction.
So, your answer is C. Compound 1 is ionic, and compound 2 is molecular.
Hope this helps!
The electrons will move more rapidly resulting in a higher pressure even at a consistent volume
It's called a nebula or nebulae (plural). They are not only massive clouds of dust, hydrogen and helium gas, and plasma; they are also often “stellar nurseries” – i.e. the place where stars are born.
Answer:
a
Explanation:
A Gamma rays is the best wavelength for an astronomer to use to study the composition of planets and stars