Answer:
energy story for lactic acid fermentation
Explanation:
the reactants are pyruvate NADH and proton
The current required to accumulate the 1.22 grams of nickel in 0.5 hours is 2.23 A.
<h3>What is current?</h3>
The current is given as the product of the charge with time. In the electrochemical analysis of the nickel, there will be a reduction of the nickel ion to nickel. The formation is given as:

There is the deposition of 1 mole of Ni with 2 electrons transfer. The transfer of charge for 1 mole that is 58.7 grams Nickel is:

The mass of Ni to be deposited is 1.22 grams. The charge required is given as:

The current required to transfer 4010.7 C of charge in 1800 seconds is given as:

Thus, the current required to accumulate the 1.22 grams of nickel in 0.5 hours is 2.23 A.
Learn more about current, here:
brainly.com/question/23063355
#SPJ4
Hydrogen peroxide in water and adding kool- aid powder to water so the liquid turns red
Answer:
Explanation:
You multiply the concentration (in moles per litre) by the volume in litres. The number of moles of a substance in one litre of solution is called its molarity. The official symbol for molarity is “c” (concentration), but most people use the symbol “M”. where n is the number of moles and V is the volume in litres
+
⇔
Decreasing the temperature of the reaction,the reaction shifts forward.
The explanation is given below.
Explanation:
If the temperature of the reaction mixture is increased,then the equilibrium will shift to decrease the temperature.
If the temperature of the reaction mixture is decreased,then the equilibrium will shift to increase the temperature.
During the formation of the ammonia,it gives off heat.So it is an exothermic reaction.
+
⇔
A decrease in the temperature favors the reaction that is exothermic (the forward reaction)because it produces energy.Therefore,if the temperature is decreased,the yield of the ammonia increases.
<em>Therefore if the temperature is increased,the reaction shifts forward and the yield of the ammonia increases and it is an exothermic reaction.</em>