1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
3 years ago
8

What is the critical angle - easy definition

Physics
1 answer:
notsponge [240]3 years ago
8 0
<span>the angle of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected.</span>
You might be interested in
A straight wire of length 0.53 m carries a conventional current of 0.2 amperes. What is the magnitude of the magnetic field made
olga55 [171]

Explanation:

It is given that,

Length of wire, l = 0.53 m

Current, I = 0.2 A

(1.) Approximate formula:

We need to find the magnitude of the magnetic field made by the current at a location 2.0 cm from the wire, r = 2 cm = 0.02 m

The formula for magnetic field at some distance from the wire is given by :

B=\dfrac{\mu_oI}{2\pi r}

B=\dfrac{4\pi \times 10^{-7}\times 0.2\ A}{2\pi \times 0.02\ m}

B = 0.000002 T

B=10^{-5}\ T

(2) Exact formula:

B=\dfrac{\mu_oI}{2\pi r}\dfrac{l}{\sqrt{l^2+4r^2} }

B=\dfrac{\mu_o\times 0.2\ A}{2\pi \times 0.02\ m}\times \dfrac{0.53\ m}{\sqrt{(0.53\ m)^2+4(0.02\ m)^2} }

B = 0.00000199 T

or

B = 0.000002 T

Hence, this is the required solution.

4 0
3 years ago
30 Pts! Answer fast please!<br> mass= 1 kg KE= 18 Joules <br> What is the velocity?
makvit [3.9K]
Its 21!! sorry i was late! :)
5 0
3 years ago
Calculate the ratio of the resistance of 12.0 m of aluminum wire 2.5 mm in diameter, to 30.0 m of copper wire 1.6 mm in diameter
alukav5142 [94]

Answer: 0.258

Explanation:

The resistance R of a wire is calculated by the following formula:

R=\rho\frac{l}{s}    (1)

Where:

\rho is the resistivity of the material the wire is made of. For aluminium is \rho_{Al}=2.65(10)^{-8}m\Omega  and for copper is \rho_{Cu}=1.68(10)^{-8}m\Omega

l is the length of the wire, which in the case of aluminium is l_{Al}=12m, and in the case of copper is l_{Cu}=30m

s is the transversal area of the wire. In this case is a circumference for both wires, so we will use the formula of the area of the circumference:

s=\pi{(\frac{d}{2})}^{2}  (2) Where d  is the diameter of the circumference.

For aluminium wire the diameter is  d_{Al}=2.5mm=0.0025m  and for copper is d_{Cu}=1.6mm=0.0016m

So, in this problem we have two transversal areas:

<u>For aluminium:</u>

s_{Al}=\pi{(\frac{d_{AL}}{2})}^{2}=\pi{(\frac{0.0025m}{2})}^{2}

s_{Al}=0.000004908m^{2}   (3)

<u>For copper:</u>

s_{Cu}=\pi{\frac{(d_{Cu}}{2})}^{2}=\pi{(\frac{0.0016m}{2})}^{2}

s_{Cu}=0.00000201m^{2}    (4)

Now we have to calculate the resistance for each wire:

<u>Aluminium wire:</u>

R_{Al}=2.65(10)^{-8}m\Omega\frac{12m}{0.000004908m^{2}}     (5)

R_{Al}=0.0647\Omega     (6)  Resistance of aluminium wire

<u>Copper wire:</u>

R_{Cu}=1.68(10)^{-8}m\Omega\frac{30m}{0.00000201m^{2}}     (6)

R_{Cu}=0.250\Omega     (7)  Resistance of copper wire

At this point we are able to calculate the  ratio of the resistance of both wires:

Ratio=\frac{R_{Al}}{R_{Cu}}   (8)

\frac{R_{Al}}{R_{Cu}}=\frac{0.0647\Omega}{0.250\Omega}   (9)

Finally:

\frac{R_{Al}}{R_{Cu}}=0.258  This is the ratio

3 0
3 years ago
A 1.50-m cylinder of radius 1.10 cm is made of a complicated mixture of materials. Its resistivity depends on the distance x fro
MArishka [77]

Answer:

Resistance = 3.35*10^{-4} Ω

Explanation:

Since resistance R = ρ\frac{L}{A}

whereas \rho(x) = a + bx^2

resistivity is given for two ends. At the left end resistivity is 2.25* 10^{-8} whereas x at the left end will be 0 as distance is zero. Thus

2.25*10^{-8} = a + b(0)^2\\ 2.25*10^{-8} = a + 0 \\2.25*10^{-8} = a

At the right end x will be equal to the length of the rod, so x = 1.50\\8.50*10^{-8} = (2.25*10^{-8}) + ( b* (1.50)^2 )\\8.50*10^{-8} - (2.25*10^{-8}) = b*2.25\\\frac{6.25*10^{-8}}{2.25}  = b\\b = 2.77 *10^{-8}

Thus resistance will be R = ρ\frac{L}{A}

where A = π r^2

so,

R = \frac{8.50*10^{-8} * 1.50}{3.14*(1.10*10^{-2})^2} \\R=3.35 * 10 ^{-4}

6 0
3 years ago
Which of the following displays has the highest hz frequency
Ganezh [65]

Answer:

Plasma

Explanation:

3 0
3 years ago
Other questions:
  • What is the approximate size of the smallest object on the earth that astronauts can resolve by eye when they are orbiting 250 k
    15·1 answer
  • A factory robot drops a 10 kg computer onto a conveyor belt running at 3.1 m/s. The materials are such that μs = 0.50 and μk = 0
    12·1 answer
  • If the incident light is unpolarized, about how much of the light intensity gets through a plane polarizer? (give the answer as
    11·1 answer
  • If you were able to keep the electromagnet that you created in your laboratory activity, what would be two possible uses for the
    8·2 answers
  • What are the base units in the metric system?
    10·2 answers
  • An OP AMP has CMRR = 100 dB and open-loop gain =250000.<br><br> Determine the common mode gain ACM
    9·1 answer
  • In which situation would a space probe most likely experience centripetal acceleration?
    9·1 answer
  • A fruit bat falls from the roof of a cave. We know that her potential energy was
    9·1 answer
  • 2. Look at the table of typical densities. You have a 1 cm volume of each of the materials.
    5·2 answers
  • Are the stack temperature and oxygen reasonable for these operating conditions? if not, what oxygen and stack temperature would
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!