Answer:
The rock will reach 9 m from the ground at eaxactly 5.06 s after it was initially thrown upwards.
Explanation:
We will use the equations of motion for this.
u = initial velocity of the rock = 22 m/s
g = acceleration due to gravity = -9.8 m/s²
y = vertical position of the rock at a time t = 9 m
y₀ = initial height of the rock = 25 m
t = time it takes for the rock to reach height of 9 m.
(y-y₀) = ut + 0.5gt²
(9 - 25) = 22t + 0.5(-9.8)t²
- 14 = 22t - 4.9t²
4.9t² - 22t - 14 = 0
solving this quadratic equation,
t = 5.055 s or - 0.565 s
Since time cannot be negative,
t = 5.055 s = 5.06 s
Hope this Helps!!!
Answer:
0.80865 Hz
1.23662 seconds
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
l = Length of arm = 0.57 m
Length of simple pendulum is given by

The frequency is given by

The frequency is 0.80865 Hz
The time period is given by

The time period is 1.23662 seconds
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.