Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
Answer:5.35nm
Explanation:
Consider that 1 inch is = 0.0254m
we have,
1m= 1x10^9 nm
While:
0.0254m = 2.54x10^7nm
1/55 (2.54x10^7) = 4.6181 x 10^5nm
1 day= 24 hrs
= (24x60) when calculating in min
= (24x60x60) calculating in seconds we have:
= 8.64x10⁴sec
In 8.64x10^4 seconds, the hair grows by 4.6181 x 10^5nm
Therefore, the amount by which the hair grows in 1 second will be;
= (4.6181 x 10^5)/(8.64x10^4)
= 5.35nm
The rate of growth will be 5.35nm
The answer is "C" because the equator is closest to the sun, because the sun's rays hits the earth surface at the higher angel at the equator and also the sun is directly overhead the equator.
Answer:
7.15 m/s
Explanation:
We use a frame of reference in which the origin is at the point where the trucck passed the car and that moment is t=0. The X axis of the frame of reference is in the direction the vehicles move.
The truck moves at constant speed, we can use the equation for position under constant speed:
Xt = X0 + v*t
The car is accelerating with constant acceleration, we can use this equation
Xc = X0 + V0*t + 1/2*a*t^2
We know that both vehicles will meet again at x = 578
Replacing this in the equation of the truck:
578 = 24 * t
We get the time when the car passes the truck
t = 578 / 24 = 24.08 s
Before replacing the values on the car equation, we rearrange it:
Xc = X0 + V0*t + 1/2*a*t^2
V0*t = Xc - 1/2*a*t^2
V0 = (Xc - 1/2*a*t^2)/t
Now we replace
V0 = (578 - 1/2*1.4*24.08^2) / 24.08 = 7.15 m/s