Answer:
the distance that the object is raised above its initial position is 5.625 m.
Explanation:
Given;
applied effort, E = 15 N
load lifted by the ideal pulley system, L = 16 N
distance moved by the effort, d₁ = 6 m
let the distance moved by the object = d₂
For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.
M.A = V.R

Therefore, the distance that the object is raised above its initial position is 5.625 m.
Answer:
The normal line divides the angle between the incident ray and the reflected ray into two equal angles. The angle between the incident ray and the normal is known as the angle of incidence. The angle between the reflected ray and the normal is known as the angle of reflection.
We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
Answer:
Kelvin
Explanation:
fact as per the guideline given
The characteristics of the RLC circuit allow to find the result for the capacitance at a resonance of 93.5 Hz is:
- Capacitance is C = 1.8 10⁻⁶ F
A series RLC circuit reaches the maximum signal for a specific frequency, called the resonance frequency, this value depends on the impedance of the circuit.
Where Z is the impedance of the circuit, R the resistance, L the inductance, C the capacitance and w the angular velocity. The negative sign is due to the fact that the current in the capacitor and the inductor are out of phase.
In the case of resonance, the impedance term completes the circuit as a resistive system.
Indicate that the inductance L = 1.6 H and the frequency f = 93.5 Hz.
Angular velocity and frequency are related.
w = 2π f
Let's substitute.
Let's calculate.
C = 1.8 10⁻⁶ F
In conclusion with the characteristics of the RLC circuits we can find the result for the capacitance at a 93.5 Hz resonance is:
- Capacitance is C = 1.8 10⁻⁶ F
Learn more about serial RLC circuits here: brainly.com/question/15595203