The car has an initial velocity of 23 m/s and a final velocity of 0 m/s. Recall that for constant acceleration,
The car stops in 7 s, so the acceleration is
Answer:
D) The ball exerts a force on the wall and the wall exerts a force back.
Explanation:
Newton's third law of motion states that:
"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"
In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:
The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.
According to Newton's second Law of motion, if the mass of an object is 10 kg and the force is 10 newtons, then the acceleration is 1m/s².
<h3>How to calculate acceleration?</h3>
The acceleration of a moving body can be calculated by dividing the force of the body by its mass.
According to this question, the mass of an object is 10 kg and the force is 10 newtons, then the acceleration can be calculated as follows:
acceleration = 10N ÷ 10kg
acceleration = 1m/s²
Therefore, according to Newton's second Law of motion, if the mass of an object is 10 kg and the force is 10 newtons, then the acceleration is 1m/s².
Learn more about acceleration at: brainly.com/question/12550364
#SPJ1
Answer:
A. 148.23 m
B. 2.75 m/s
Explanation:
The following data were obtained from the question:
Time of flight (T) = 11 s
Maximum height (h) =?
Initial velocity (u) =?
Next, we shall determine the time taken for the ball to get to the maximum height. This can be obtained as follow:
Time of flight (T) = 11 s
Time (t) to reach the maximum height =.?
T = 2t
11 = 2t
Divide both side by 2
t = 11/2
t = 5.5 s
NOTE: Time to reach the maximum height is the same as the time taken for the ball to fall back to the plane of projection.
A. Determination of the maximum height to which the ball was thrown.
Time (t) to reach maximum height = 5.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =?
h = ½gt²
h = ½ × 9.8 × 5.5²
h = 4.9 × 30.25
h = 148.23 m
B. Determination of the initial velocity.
Maximum height (h) reached = 148.23 m
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =?
u² = h/2g
u² = 148.23 / (2 × 9.8)
u² = 148.23 / 19.6
Take the square root of both side
u = √(148.23 / 19.6)
u = 2.75 m/s
Answer:
6.77 minutes
Explanation:
172 degree - 78 degree = (185 degree - 78 degree)e−2 k
=> 94 = 107
e−2 k => 94 ÷ 107
k => ln (94÷107) / 2
147 - 78 = (185 - 78)e ^[ln (94÷107) / 2]
=> 69 = 107 e^ [ln (94÷107) / 2]
e^[ln (94÷107) / 2] =69 ÷ 107
=> t = [ln (69 ÷ 107)] ÷ [ln (94÷107) / 2]
t=> -0.4387 ÷ -0.0648
t => 6.77 minutes.
Therefore, the final answer to the question is 6.77 minutes.