Answer:

Explanation:
Given:
- charge on the alpha particle,

- mass of the alpha particle,

- strength of a uniform magnetic field,

- radius of the final orbit,

<u>During the motion of a charge the magnetic force and the centripetal forces are balanced:</u>


where:
v = velocity of the alpha particle



Here we observe that the velocity of the aprticle is close to the velocity of light. So the kinetic energy will be relativistic.
<u>We firstly find the relativistic mass as:</u>



now kinetic energy:



Answer:
15.67 m/s
Explanation:
The ball has a projectile motion, with a horizontal uniform motion with constant speed and a vertical accelerated motion with constant acceleration g=9.8 m/s^2 downward.
Let's consider the vertical motion only first: the vertical distance covered by the ball, which is S=50 m, is given by

where t is the time of the fall. Substituting S=50 m and re-arranging the equation, we can find t:

Now we now that the ball must cover a distance of 50 meters horizontally during this time, in order to fall inside the carriage; therefore, the velocity of the carriage should be:

Answer:
The value we are given in the question is 1.24 * 10^7. This form of writing number is called scientific notation. The standard notation is the normal, regular way of writing numbers. Scientific notation and standard notations are interchangeable.
1.24 * 10^7 written in standard notation will be = 1.24 * 10000000 = 12400000.
Thus, the mass of the meteoroid was 12400000 kg.
Explanation: