<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:

If the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
Doppler effect states that, if a person is standing still and a source ( sound / light ) is moving towards him, the frequency of the wave emitted from the object will increase and if the source ( sound / light ) is away from him, the frequency of the wave emitted from the object will decrease.
So, if the light from the sun has higher frequencies from one side of the sun than from the other side, it means that the Sun is rotating. The higher frequencies points are the points that rotating towards Earth and lower frequencies points are the points that rotating away from Earth.
Therefore, if the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
To know more about Doppler Effect
brainly.com/question/15318474
#SPJ1
Curved line
Explanation:
Acceleration of motion is represented by a curved line on a non-linear distance-time graph.
The acceleration of a non-linear motion is depicted using a parabola which is a curve. This implies that the velocity is constantly changing and the distance covered by the body is also changing with equal amount of time.
- A plot of this will give a parabola. This can be further established using one of the equations of motion below:
x = u +
at ²
This is a quadratic function where:
x is the distance
u is the initial velocity
t is the time
a is acceleration
A quadratic function gives a curved line which is a parabola.
Learn more:
Acceleration brainly.com/question/10932946
#learnwithBrainly
using the law of refraction, the incidence is equal to the reflection, but not refraction
Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1